

Bayerisches Landesamt für Umwelt

Geowissenschaftliche Landesaufnahme in der Planungsregion 12 Donau-Wald

Erläuterungen zur Hydrogeologischen Karte 1:100000

Hydrogeologische Karte

Geowissenschaftliche Landesaufnahme in der Planungsregion 12 Donau-Wald

Erläuterungen zur Hydrogeologischen Karte 1:100000

Bearbeiter:

G. W. Diepolder, B. Kainzmaier, C. Pukowietz,T. Spörlein, B. Wagner, T. Wilferth, M. Zeitlhöfler,A. Blomenhofer, S. Blumenstein, K. Zosseder

214 Seiten, 57 Abbildungen, 33 Tabellen, Augsburg 2011

UmweltSpezial Hydrogeologische Karte

Impressum

Geowissenschaftliche Landesaufnahme in der Planungsregion 12 Donau-Wald* Erläuterungen zur Hydrogeologischen Karte 1:100000

*Finanziert aus dem Projekt "Hydrogeologische Landesaufnahme Bayerns" der Bayerischen Staatsregierung, gefördert aus Mitteln des Europäischen Fonds für Regionale Entwicklung (EFRE)

Herausgeber:

Bayerisches Landesamt für Umwelt (LfU) Bürgermeister-Ulrich-Straße 160 86179 Augsburg Tel.: 0821 9071-0 Fax.: 0821 9071-5556 E-Mail: poststelle@lfu.bayern.de Internet: www.lfu.bayern.de

Bearbeitung:

LfU, G.W. Diepolder, B. Kainzmaier, C. Pukowietz, T. Spörlein, B. Wagner, T. Wilferth, M. Zeitlhöfler, A. Blomenhofer S. Blumenstein, K. Zosseder

Redaktion: Redaktion: LfU, Referat 104, B. Wagner

Bildnachweis:

Dr. G.W. Diepolder, Münsing: Abb. 2-6, Abb. 2-8 Dr. T. Rubbert, Lohmar: Abb. 2-9

Druck:

Offsetdruckerei Karl Grammlich GmbH, Karl-Benz-Str. 3, 72124 Plietzhausen

Gedruckt auf Papier aus 100% Altpapier

Stand: November 2011

Diese Druckschrift wurde mit großer Sorgfalt zusammengestellt. Eine Gewähr für die Richtigkeit und Vollständigkeit kann den noch nicht übernommen werden. Sofern in dieser Broschüre auf Internetangebote Dritter hingewiesen wird, sind wir für deren Inhalte nicht verantwortlich.

Inhaltsverzeichnis

Vo	rwort	5
1	Einleitung	6
2	Hydrogeologischer Überblick	8
3 3.1 3.2 3.3 3.4	Hydrogeologische Einheiten und ihre Eigenschaften Hydrogeologische Einheiten Hydraulische Kennwerte Lineamentanalyse Schichtgrenzen	29 29 38 46 51
4 4.1 4.2 4.3	Grundwasserbeschaffenheit Datengrundlagen Charakterisierung der hydrogeochemischen Einheiten Radon	58 58 64 100
5	Blatt 1: Klassifikation der hydrogeologischen Einheiten	107
6	Blatt 2: Grundwasserhöhengleichen	109
7	Blatt 3: Hydrogeologische Grunddaten	114
8 8.1 8.2 8.3 8.4	Blatt 4: Schutzfunktion der Grundwasserüberdeckung Bewerteter Grundwasserleiter Grundwasserneubildung und Sickerwasserrate Bewertung der Böden, Deckschichten und tieferen ungesättigten Zone Aussagen der Karte der Schutzfunktion der Grundwasserüberdeckung	115 116 117 123 137
9	Blatt 5: Hydrogeologische Profilschnitte	139
Lite	eratur	141
An Hyd	hang 1 Irogeologische Karten 1:50 000 (HK50) der Planungsregion 12 Donau-Wald	147
An Gru Nac	hang 2 Indwasserbeschaffenheit – Verzeichnis der analysierten Parameter, Analysemethoden, Ichweis- und Bestimmungsgrenzen sowie Teilprobenbehandlung	148
An Gru Par	hang 3 Indwasserbeschaffenheit – Verzeichnis der statistischen Maßzahlen der physikochemischen ameter, geordnet nach hydrogeochemischen Einheiten	150
An Gru Par	hang 4 Indwasserbeschaffenheit – Verzeichnis der Spannweitendiagramme der physiko-chemischen ameter der in der Planungsregion 12 Donau-Wald untersuchten Grundwasserproben	163

Vorwort

Die geowissenschaftliche Landesaufnahme Bayerns hat ihre Wurzeln bereits im achtzehnten Jahrhundert. Heute wird diese Aufgabe im Zuge einer modernen Verwaltung am Bayerischen Landesamt für Umwelt durchgeführt. Die Arbeiten erfolgen im Rahmen der gesetzlichen Verpflichtung nach einer Erforschung des Untergrundes in der Weise, dass die Ergebnisse für Wirtschaft, Wissenschaft und Behörden nutzbringend werden.

Die geowissenschaftliche Bearbeitung der Region 12 Donau-Wald wurde mit Mitteln des Bayerischen Staatsministeriums für Umwelt und Gesundheit sowie einer Förderung durch die EU aus dem Fond für regionale Entwicklung (EFRE) durchgeführt. Mit der vorliegenden Veröffentlichung der hydrogeologischen Karte der Planungsregion 12 Donau-Wald wird nun ein weiterer Baustein der ganzheitlichen geowissenschaftlichen Landesaufnahme Bayerns vorgelegt. Ziel ist eine erste flächendeckende Bearbeitung Bayerns im Detailmaßstab noch in diesem Jahrzehnt.

In den fünfziger Jahren wurden geowissenschaftliche Karten sprichwörtlich in Stein gemeißelt, um gedruckt zu werden. Heute im Zeitalter des Computers haben gedruckte Karten weiterhin einen hohen Stellenwert, jedoch treten mehr und mehr digitale Medien in den Vordergrund. Die hier vorgelegten hydrogeologischen Karten stehen daher auch im Internet unter www.bis.bayern.de zur Verfügung.

Ich wünsche allen interessierten Lesern viel Spaß bei der Lektüre dieser Erläuterung.

Claus Kumutat Präsident

1 Einleitung

Eine möglichst genaue Kenntnis der hydrogeologischen Verhältnisse ist die Grundlage für die Bearbeitung zahlreicher fachlicher Fragestellungen, zum Beispiel im Bereich der Trinkwassererschließung, der Nutzung der Geothermie oder der Rohstoffgewinnung.

Mit dem vorliegenden Band der Hydrogeologischen Karte der Planungsregion 12 Donau-Wald 1:100000 wird die nach Planungsregionen gegliederte Veröffentlichungsreihe zur hydrogeologischen Landesaufnahme Bayerns fortgeführt. Bisher liegen bereits die Planungsregionen 4 Oberfranken West, 10 Ingolstadt und 13 Landshut gedruckt vor.

Grundlage der hydrogeologischen Inselkarten der Planungsregion im Maßstab 1:100000 sind die hydrogeologischen Karten im Detailmaßstab 1:50000 (HK50), die nur digital erhältlich sind. Ein direkter Zugang zu den Karten besteht über das Internet im Bodeninformationssystem Bayern unter www.bis.bayern.de. Das Kartenwerk umfasst die Themen "Klassifikation der hydrogeologischen Einheiten" (Blatt 1), "Grundwasserhöhengleichen" (Blatt 2), "Hydrogeologische Grunddaten" mit den relevanten Punktdaten (Blatt 3) und die "Schutzfunktion der Grundwasserüberdeckung" (Blatt 4). Blatt 5 enthält mehrere hydrogeologische Profilschnitte im Maßstab 1:100000, die eine räumliche Vorstellung vom hydrogeologischen Aufbau der Region geben. Die Blattschnitte der HK50 in der Planungsregion sind der Abbildung 1-1 zu entnehmen; eine Auflistung der Karten findet sich in Anhang 1.

Die vorliegende Erläuterung gibt einen Überblick der Hydrogeologie der Region. Die differenzierten hydrogeologischen Einheiten werden in einer Tabelle hinsichtlich ihrer Eigenschaften charakterisiert. Für die Wasserführung im Grundgebirge ist im unverwitterten Bereich aufgrund der fehlenden Matrixporosität die Klüftung von herausragender Bedeutung. Daher wurden im Projekt die Lineamente eingehender betrachtet; die wesentlichen Ergebnisse sind in einem eigenen Kapitel beschrieben. Die hydraulischen Durchlässigkeiten und die hydrogeochemischen Hintergrundwerte wurden anhand der umfangreichen Datengrundlagen statistisch ausgewertet. Im Kapitel Grundwasserbeschaffenheit wird auch auf das Radon eingegangen, das in den Grundgebirgseinheiten in höheren Konzentrationen auftritt. Des Weiteren werden die einzelnen Kartenblätter hinsichtlich der Methodik und der dargestellten Inhalte erläutert.

Abb. 1-1: Übersicht der Planungsregion 12 Donau-Wald mit den Blattschnitten der Hydrogeologischen Karte 1 : 50 000 (HK50) vor dem Hintergrund der hydrogeologischen Teilräume.

2 Hydrogeologischer Überblick

Die Planungsregion 12 Donau-Wald liegt im Osten Bayerns. Die Region wird aus zwei hydrogeologischen Räumen der hydrogeologischen Raumgliederung Bayerns (BÜTTNER et al. 2003) aufgebaut, die entlang einer NW–SE verlaufenden Linie getrennt sind: im südlichen Teil das Alpenvorland mit dem hydrogeologischen Teilraum Tertiär-Hügelland des Molassebeckens, in das die fluvioglazialen Schotter der Talräume von Isar, Inn und Donau eingebettet sind sowie mit deutlich größerem Flächenanteil im Norden das Kristalline Grundgebirge des Oberpfälzer-Bayerischen Waldes. Als besondere Bildungen sind die tertiären Randbuchten und das intrakristalline Tertiär zu erwähnen sowie der ebenfalls NW–SE parallel zur Trennung der beiden Räume verlaufende Pfahl, der eine markante Störungszone innerhalb des Grundgebirges markiert. Die Grenze zwischen Kristallinem Grundgebirge und Alpenvorland entspricht der Störungszone des Donaurandbruchs und birgt im Untergrund bruchartig zerteilte Schollen der tiefer anzutreffenden mesozoischen Einheiten, vorwiegend Kreide und Malm, die hydrogeologisch lokal bedeutend sein können.

Fluvioglaziale Schotter

Der hydrogeologische Teilraum Fluvioglaziale Schotter in der Planungsregion 12 Donau-Wald umfasst die quartären Talfüllungen des Inns sowie der Donau zwischen Straubing und Vilshofen mit dem Isarmündungsbereich (Abb. 1-1). Der nordöstliche Randbereich des Donautalquartärs, markiert durch den NW–SE verlaufenden Donaurandbruch, wird überwiegend durch die kristallinen Gesteine des Grundgebirges in einem schroffen Anstieg begrenzt, bereichsweise grenzen die Lockersedimente der tertiären Buchten an. Südwestlich des Donautals schließen sich die Sedimente des Tertiär-Hügellandes in einem allmählichen Anstieg an, während diese an der Begrenzung des Inntals steile Hänge bilden. In den Flusstälern erstrecken sich jeweils zahlreiche Terrassen unterschiedlichen Alters, deren Oberflächen in verschiedenen Höhen liegen. Im Donautal umfasst die quartäre Talfüllung holozäne Auenterrassen, jung- und mittelpleistozäne Niederterrassen und Hochterrassen sowie alt- bis ältestpleistozäne Terrassenniveaus (Deckenund Hochschotter). Im Inntal lagern neben den holozänen Auenterrassen würmzeitliche Niederterrassen und ältere Terrassenkiese als kleinere Reste in größeren Höhen über dem Talboden.

Die quartären Talfüllungen sowie die anschließenden quartären Terrassenablagerungen bestehen überwiegend aus sandigen Kiesen bis kiesigen Sanden mit meist geringem Feinkornanteil. Während die pleistozänen Schichtpakete überwiegend verhältnismäßig homogen kiesig-sandig aufgebaut sind, treten vor allem in postglazial geprägten Talbereichen, in denen mäandrierende Flussarme mit Grobschotterführung neben abgeschnürten, mit Feinsedimenten erfüllten Altwasserbereichen wechseln, stärkere Inhomogenitäten auf. Neben den alpin beeinflussten Schottern finden sich periglaziale Schotterablagerungen des tertiären Einzugsgebietes sowie durch Materialzufuhr aus dem Bayerischen Wald geprägte Komponenten.

Das Liegende der quartären Talfüllung im Donautal bilden größtenteils bindige tertiäre Sedimente, nach Nordosten hin auch zunehmend die kristallinen Gesteine des Grundgebirges, bei Münster, Flintsbach sowie zwischen Winzer und Hofkirchen die oberflächennah anstehenden Jura-Randschollen am Donaurandbruch. Im Inntal lagern unter den Quartärkiesen ebenfalls feinkörnige Molassesedimente. Die Quartärbasis weist in ihrer Oberfläche deutliche Höhenunterschiede auf und zeigt lokal flachwellige Rinnen- und Rückenstrukturen, was zu Mächtigkeitsunterschieden der Quartärkiese über kurze Distanz führt. Die Mächtigkeiten schwanken dabei in der Regel zwischen 5 und 15 m. Die Hochterrassen und vor allem die älteren Terrassen und Deckenschotter im Donautal sind von einigen Metern mächtigen Lössschichten bedeckt. Aus dem ackerbaulichen Nutzwert resultiert die intensive landwirtschaftliche Nutzung des Gebietes, was auch im Regionalnamen "Gäuboden" für den Bereich des Donautals zwischen Wörth a.d. Donau und Künzing zum Ausdruck kommt. Die holozänen Auenterrassen sind in der Regel durch teilweise über 5 m mächtige feinkörnige Auen- und Hochflutsedimente überdeckt. Schwemmfächer und -ablagerungen unterschiedlicher Mächtigkeiten finden sich vor allem an den Einmündungen der Nebentäler, Anmoore und Moore mit Mächtigkeiten bis zu ca. 4 m treten mehrfach in den holozänen Donautalniederungen auf.

Die quartären Talfüllungen stellen in ihrer überwiegend kiesigen Ausbildung einen Grundwasserleiter mit mittlerer bis hoher Porendurchlässigkeit und meist großer Mächtigkeit sowie überwiegend hoher bis sehr hoher Ergiebigkeit dar und sind damit in der Region für die Trinkwasserversorgung von überregionaler Bedeutung. Die Grundwasserführung der unterschiedlichen Terrassenkörper hängt häufig von der relativen Höhenlage der Schüttungseinheiten zueinander ab. Die Schotter der Niederterrasse und der holozänen Talaue sind in der Regel bis in Flurnähe mit Grundwasser erfüllt. In den höher gelegenen, älteren Terrassen an den Randzonen treten über hoch liegendem Tertiärsockel geringere Grundwassermächtigkeiten auf. Je nach Höhenlage der Quartärbasis kommt es an der Terrassenkante entweder zur Vernässung des Terrassenfußes bis hin zu Quellaustritten aufgrund Querschnittsverengung, falls die Grundwasseroberfläche beim Übertritt in die tiefere Terrasse die Geländeoberfläche schneidet (Verengungsquellen), oder aber es bildet sich ein isoliertes Stockwerk mit Quellaustritten an der Terrassenkante aus, wenn der höher gelegene Schotterkörper von den tieferen abgeschnitten ist. Entsprechend finden sich vor allem im Donautal an Terrassenhängen Quellhorizonte, an denen Schichtquellen oder Verengungsquellen mit Schüttungen von max. 3 I/s austreten.

Durch bereichsweise in die Schotter eingelagerte Feinsedimentlagen (Schluff bis Ton) ist teilweise die Bildung hangender Grundwasservorkommen möglich, wie z. B. südlich Straubing im Bereich von Mitterharthausen. Die Grundwassersohle der quartären Schotter im Donau- und Inntal wird überwiegend von feinkörnigen, vornehmlich schluffig-tonigen tertiären Sedimenten gebildet, die im Inntal vor allem aus den Schichten der Oberen Meeresmolasse aufgebaut werden und im Donautal in großen Bereichen aus den Limnischen Süßwasserschichten, welche sich nach Norden hin mit dem Braunkohlentertiär (OSM) verzahnen. Am nordöstlichen Rand des Donautals sowie im äußersten Norden des Inntals werden die quartären Schotter von den kristallinen Gesteinen des Grundgebirges unterlagert bzw. sogar durchragt, wie z. B. der Natternberg SW Deggendorf oder bei Neuhaus a. Inn. In den südwestlichen Randbereichen des Donautals werden die quartären Schotter von überwiegend sandig-kiesigen Schichten der Oberen Süßwassermolasse unterlagert, im Bereich von Künzing von den Kiesen der Ortenburger Schotterabfolge der Oberen Brackwasser-/Älteren Oberen Süßwassermolasse (sog. Künzinger Fenster), an die sie hydraulisch angekoppelt sind.

Abhängig von der Höhenlage der einzelnen Terrassenoberflächen und Kieskörper, aber auch von der Oberfläche der darunter lagernden Sedimente, bilden die einzelnen Terrassenkörper einen hydraulisch zusammenhängenden Grundwasserleiter oder aber auch voneinander getrennte Grundwasserkörper, wie z. B. häufig die Schotter der Hochterrassen und älteren Terrassenschotter. In zusammenhängenden Terrassen ist ebenso ein zusammenhängender Grundwasserkörper anzunehmen.

Die Flurabstände und die Grundwassermächtigkeiten im Donautal zeigen durch Rücken und Mulden der Grundwassersohle ein sehr differenziertes Bild (Abb. 2-1 und 2-2). Im donaufernen Bereich (Hochterrassen und ältere Terrassenschotter) bewegen sich die Flurabstände überwiegend im Bereich von 6 bis 20 m, im flussnahen Bereich (Niederterrassen und holozäner Bereich) zwischen 1 bis 2 m und führen dort zu teilweise ausgedehnten Vernässungsarealen. Die Grundwassermächtigkeiten schwanken von < 5 m bis vereinzelt 20 m. Die Flurabstände im Inntal bewegen sich zwischen über 5 m im flussfernen Bereich und bis unter 1 m in Flussnähe. Die Grundwassermächtigkeiten schwanken von < 5 m bis maximal 10 m. Sowohl im Inn- als auch im Donautal herrschen überwiegend freie Grundwasserverhältnisse. In den holozänen Talbereichen treten aufgrund der Überdeckung mit bindigen Auensedimenten bereichsweise leicht gespannte Grundwasserverhältnisse auf.

Die quartären Schotter des Donau- und Inntals stellen in der Planungsregion 12 Donau-Wald den ergiebigsten und damit für die Trink- und Brauchwasserversorgung einen überregional bedeutenden Grundwasserleiter dar. Da oft der Nitrat-Grenzwert der Trinkwasserverordnung (50 mg/l) aufgrund der intensiven landwirtschaftlichen Nutzung (v. a. Gäuboden zwischen Straubing und

Abb. 2-1: Flurabstände im Quartär des Donautals.

Vilshofen) überschritten wird, mischen einige Versorger den Wässern aus den quartären Grundwasserleitern nitratarme Wässer aus den tieferen tertiären Grundwasserleitern bei (im Donautal v. a. aus den Feinsandlagen des Braunkohlentertiärs (OSM) und aus der Ortenburger Schotterabfolge, im Inntal aus den sandigen Partien der Oberen Meeresmolasse), die oft unter artesischem Druck stehen. Auch für die Getränkeabfüllung, Mineralwassergewinnung (nach MIN/TAFELWV 1984) und Brauereizwecke werden bevorzugt die durch mächtige Deckschichten geschützten Wässer aus dem tiefer liegenden Tertiär verwendet, z. B. in Reding im Inntal (Redinger Mineralbrunnen, Untere Meeresmolasse). Eine tiefengeothermische Nutzung erfolgt in den Thermalwasserbohrungen von Straubing, die den tiefer liegenden Malm erschließen. Daneben wird ein Teil dieses Wassers für balneologische Zwecke genutzt. Ebenso erfolgt eine balneologische Nutzung der Thermalwasservorkommen des Malms in Bad Füssing im Inntal.

Abb. 2-2: Grundwassererfüllte Mächtigkeiten im Quartär des Donautals.

Tertiär-Hügelland

Der hydrogeologische Teilraum Tertiär-Hügelland nimmt den westlichen und südwestlichen Bereich der Planungsregion 12 Donau-Wald ein (Abb. 1-1). Im Norden wird er von den quartären Ablagerungen des Donautals und dem Isarmündungsgebiet begrenzt, im Süden von den kristallinen Gesteinen des Oberpfälzer-Bayerischen Waldes und den quartären Ablagerungen des Inntals.

Das Tertiär-Hügelland ist Teil des süddeutschen Molassebeckens, dessen bis zu mehrere tausend Meter mächtige Ablagerungen vorwiegend aus der Abtragung des sich während der Tertiärzeit auffaltenden Alpenkörpers entstammen. Ein komplexes Zusammenspiel aus Sedimentation, Hebung im Alpenkörper, Senkung im Vorland sowie eustatischen Meeresspiegelschwankungen bewirkten einen mehrfachen Wechsel mariner, brackischer und terrestrischer (limnischer und fluviatiler) Sedimentationsbedingungen. Aufgrund der tektonischen Struktur des Molassebeckens streichen im östlichen Teil die älteren, insgesamt überwiegend feinkörnig ausgebildeten Schichten der Oberen Meeresmolasse (OMM) und Oberen Brackwasser-/Älteren Oberen Süßwassermolasse (OBSM) an der Oberfläche aus. Nach Westen zu tauchen diese allmählich ab und werden von den jüngeren Schichten der insgesamt überwiegend sandig-kiesig ausgebildeten Oberen Süßwassermolasse (OSM) überlagert. Seit dem ausgehenden Tertiär und besonders im Quartär erodierten zahlreiche Flüsse und Bäche unterschiedlich ausgedehnte Talräume in den tertiären Untergrund, in denen nachfolgend quartäre Talfüllungen sedimentiert wurden. Diese Talräume untergliedern die Landschaft in eine Vielzahl von Hügeln und Höhenrücken. Im Süden, im Anschluss an das Inntal, werden die Schichten der Meeresmolasse von älteren Terrassenkiesen überlagert.

Die Molasseablagerungen im Tertiär-Hügelland bestehen aus mehrere hundert Meter mächtigen Wechselfolgen von Kiesen, Sanden, Schluffen und Tonen. Charakteristisch ist eine starke vertikale wie horizontale fazielle Verzahnung der fein- bis grobkörnigen Sedimentfolgen. Im südöstlichen Teil, angrenzend an das Inntal, stehen an der Oberfläche die Sedimente der Oberen Meeresmolasse an, die aus bis zu ca. 200 m mächtigen Wechselfolgen von überwiegend Tonen, Schluffen sowie Fein- bis Mittelsanden aufgebaut sind. Darüber bzw. nordwestlich anschließend folgen die überwiegend schluffig-tonig, teilweise feinsandig ausgebildeten, bis zu ca. 80 m mächtigen Schichten der Oberen Brackwasser-/Älteren Oberen Süßwassermolasse. Stratigraphisch mit der Oberen Brackwasser-/Älteren Oberen Süßwassermolasse zu parallelisieren ist die Ortenburger Schotterabfolge, deren an der Oberfläche aufgeschlossene Partien im Raum Aldersbach -Vilshofen – Fürstenzell – Ortenburg südlich des Vilstals liegen. Nördlich der Vils taucht der Schotterkörper nach Nordwesten unter die überlagernden tertiären Schichten und anschließend unter das Donautal ab. Die Ortenburger Schotterabfolge besteht aus sandigen bis stark sandigen Fein- bis Grobkiesen mit geringen Schluff- und Steinanteilen und erreicht Mächtigkeiten bis zu 50 m. Südlich des Vilstals sowie im Bereich zwischen dem Donau- und Vilstal treten daneben wechselnd sandig-kiesige Vorkommen der Oberen Süßwassermolasse mit schluffig-tonigen Einschaltungen auf, bereichsweise lagern diese lokal begrenzt als Relikt auf Hochlagen mit Restmächtigkeiten bis zu 15 m. Im nordwestlichen Teil des Tertiär-Hügellandes in der Planungsregion 12 Donau-Wald dominiert an der Oberfläche anstehend die bis zu ca. 100 m mächtige Nördliche Vollschotter-Abfolge der Oberen Süßwassermolasse mit ihrer überwiegend kiesig-sandigen Ausbildung (Abb. 2-4).

Die das Tertiär-Hügelland untergliedernden quartären Talfüllungen und Terrassenablagerungen der Flüsse und Bäche (z.B. Vils, Rott, Kleine Laber, Aiterach) bestehen aus bis zu 5 m mächtigen sandigen Kiesen bis kiesigen Sanden mit je nach Einzugsgebiet wechselnd hohem Feinkornanteil.

Unterlagert werden die vorgenannten Molasseeinheiten von den Sedimenten der Unteren Meeresmolasse (Schluff, Ton mit Feinsandeinschaltungen), der Oberkreide (Quarzsande und Sandsteine mit Mergel- und Tonsteinen), des Jura (Kalksteine, unterlagert von teils karbonatischen Sandsteinen) und den kristallinen Gesteinen des Grundgebirges. Die Strukturen im Untergrund sind geprägt durch starke bruchtektonische Zerlegung. Wesentliche bestimmende Strukturelemente sind der Pockinger Abbruch mit seiner nordwestlichen Fortsetzung, dem Donaurandbruch, das Aidenbach-Griesbach-Hoch sowie das Ortenburger Senkungsfeld (Abb. 2-3). Daraus resultierend herrschen unterschiedliche Mächtigkeiten (bis mehrere hundert Meter) der die Molasseeinheiten unterlagernden Einheiten, in Hochgebieten können sie aufgrund Abtragung ganz fehlen. Besonders der östliche Teil des Tertiär-Hügellandes, der an das Grundgebirge grenzt, ist durch sehr wechselhafte geologische Verhältnisse geprägt. Störungen, Kristallinaufragungen sowie Sedimente der Kreide und des Jura reichen dort bis an die Oberfläche.

Abb. 2-3: Tektonische Strukturen des prätertiären Untergrundes und Höhenlage der Malm-Deckfläche im Südwestabschnitt der Planungsregion 12 Donau-Wald (verändert nach: Bayerisches Staatsministerium Für Wirtschaft, Infrastruktur, Verkehr und Technologie 2004).

Quartäre Deckschichten, überwiegend Löss und Lösslehm, lagern in weiten Teilen der Region über den tertiären Ablagerungen. Sie erreichen insbesondere an den nach Osten exponierten, windgeschützten Hanglagen maximale Mächtigkeiten von rund 8 m. Die zahlreichen kleinen Täler sind mit einer geringmächtigen (meist weniger als 3 m, lokal bis ca. 5 m) Mischung aus Bachund Flusssedimenten mit Hang- und Verschwemmungsablagerungen gefüllt (polygenetische Talfüllungen). Diese besteht je nach anstehendem Gestein der Molasse im Einzugsgebiet aus Kiesen, Sanden und Lehmen in unterschiedlichen Anteilen oder tonigen Sanden und Schluffen, lokal mit organischen Anteilen. Eine Grundwasserführung tritt hier nur sehr untergeordnet auf, so dass die polygenetischen Talfüllungen als Deckschicht für das tiefer liegende Grundwasser fungieren.

Im nordwestlichen Teil des Tertiär-Hügellandes der Planungsregion 12 Donau-Wald sind ergiebige Grundwasservorkommen an die sandig-kiesigen Horizonte der jüngeren Molasseeinheiten gebunden, insbesondere der Nördlichen Vollschotter-Abfolge der Oberen Süßwassermolasse. In den jüngeren Sedimenten der Oberen Süßwassermolasse, welche die Nördliche Vollschotter-Abfolge bereichsweise überlagern, sind zahlreiche lokal begrenzte Grundwasservorkommen von unterschiedlicher, meist geringer Ergiebigkeit vorhanden, die häufig über Schichtquellen entwässert werden. In der Regel werden diese nur von privaten Einzelversorgern genutzt. In isolierten Hochlagen sind die Sedimente der Oberen Süßwassermolasse oft auch grundwasserfrei. Die im Nordwesten des Tertiär-Hügellandes der Planungsregion 12 Donau-Wald in tieferen Lagen vorkommenden und im Südosten ausstreichenden älteren Molasseeinheiten (Obere Brackwasser-/Ältere Obere Süßwassermolasse, Obere Meeresmolasse) sind durch einen zunehmenden Feinkornanteil und kleinräumige Abfolgen von Schluff, Ton sowie Sand gekennzeichnet. Dadurch bedingt liegt dort eine Wechsellagerung von Poren-Grundwasserleitern und -geringleitern vor, wobei die Grundwasserführung an die sandigen Zwischenlagen gebunden und nur lokal für die Trinkwasserversorgung von Bedeutung ist. Die Schluffe und Tone der Neuhofener Schichten sind bereichsweise verfestigt, wodurch diese Festgesteinscharakter aufweisen und die Grundwasserführung somit auch an Klüftung gebunden sein kann (WROBEL 1985).

Aufgrund der intensiven faziellen Verzahnung von durchlässigen und weniger durchlässigen Sedimenten sowohl in vertikaler als auch in horizontaler Richtung ergeben sich vielfach sehr heterogene hydrogeologische Verhältnisse. Es liegen sowohl einzelne, meist lokal eng begrenzte Grundwasservorkommen als auch über hydraulische Fenster miteinander verbundene Grundwasserstockwerke vor. Großräumig kann ein oberer zusammenhängender Grundwasserkörper in den Einheiten der Oberen Süßwassermolasse, den Sedimenten der Oberen Brackwasser-/Älteren Oberen Süßwassermolasse und der Oberen Meeresmolasse als Hauptgrundwasserstockwerk in den Tertiärsedimenten abgegrenzt werden. Die grundwasserefüllten Mächtigkeiten sind vom jeweiligen Anteil der kiesigen und sandigen Schichten abhängig. Im nordwestlichen Teil betragen diese bis zu mehrere Zehnermeter Mächtigkeit, zwischengeschaltete Schluff- und Tonschichten sind dort meist nur geringmächtig. Nach Südosten tritt zunehmend eine Kornverfeinerung auf und die gröberkörnigen, überwiegend sandig ausgebildeten Schichtpakete, an die die Grundwasserführung gebunden ist, spalten sich in mehrere, nur bis zu wenige Meter geringmächtige Schichten auf.

Abb. 2-4: Aufschluss Nördliche Vollschotter-Abfolge im Probsteiholz bei Laberweinting: vorwiegend Kies mit eingeschalteten Feinkornlagen, teils schräg geschichtet bzw. diskordant.

Die Grundwasserverhältnisse sind aufgrund der Einschaltung feinkörniger Schichten überwiegend gespannt, z. T. artesisch (siehe auch Punktdarstellung artesischer Brunnen und Grundwassermessstellen auf Blatt 3 "Hydrogeologische Grunddaten"). Besonders im südöstlichen Arbeitsgebiet sind die Grundwasservorkommen der Oberen Meeresmolasse in den Talbereichen häufig mit Druckhöhen von in der Regel weniger als 3 m über Geländeoberfläche artesisch gespannt. Ansonsten schwanken die Grundwasserflurabstände des Hauptgrundwasserstockwerkes in den tertiären Sedimenten von wenigen Metern nahe den Tälern bis vereinzelt über Hundert Meter in Hochlagen im Südosten.

Im südöstlichen Bereich des Tertiär-Hügellandes in der Planungsregion 12 Donau-Wald liegt aufgrund des heterogenen Untergrundaufbaus (intensive bruchtektonische Zerlegung des Untergrunds) bedingt durch zahlreiche Kristallinaufragungen und Störungen kein größerer zusammenhängender Grundwasserkörper vor. Die an der Oberfläche anstehenden Sedimente der Oberkreide und des Jura sowie die kristallinen Gesteinsschollen führen keine nennenswerten Grundwasservorkommen oder sind lokal sehr unterschiedlich Grundwasser führend. Im Malm ist die Ergiebigkeit stark abhängig vom Grad der Klüftung und Verkarstung. Besonders in der Nähe von Störungszonen ist teils eine erhöhte und somit für die Trinkwasserversorgung bedeutende Wasserführung zu beobachten (WROBEL 1984).

Einen bedeutenden tieferen Grundwasserleiter stellt die Ortenburger Schotterabfolge der Oberen Brackwasser-/Älteren Oberen Süßwassermolasse dar, die von dem Hauptgrundwasserstockwerk in den tertiären Sedimenten entkoppelt zu betrachten ist. Die an der Oberfläche aufgeschlossenen Partien südlich des Vilstals beinhalten nur lokal begrenzte Grundwasservorkommen von geringer Mächtigkeit, doch der nördlich der Vils unter die tertiären und quartären Sedimente abtauchende Schotterkörper stellt über seinen gesamten Verlauf einen ergiebigen Grundwasserleiter dar. Im Raum Straubing sind die Schotter in ca. 130 bis 140 m Tiefe anzutreffen. Ein hydraulischer Kontakt mit Schottern der überlagernden Tertiär-Serien (insbes. Hoisberger Schotter der Hoisberger Abfolge) besteht im Bereich des Forstharter Rückens sowie mit den quartären Kiesen der Donau südöstlich von Osterhofen zwischen Arbing und Künzing im sogenannten "Künzinger Fenster". Im Vilstal besteht streckenweise eine hydraulische Anbindung der Ortenburger Schotterabfolge an das Vilstalquartär. Nach Nordosten sind die Grundwasserverhältnisse aufgrund der feinkörnigen tertiären Überlagerung gespannt. Im Niveau der Donau-Niederterrasse werden artesische Verhältnisse mit Druckhöhen bis zu wenigen Metern über der Geländehöhe beobachtet, so im Bereich von Ittling, Fahrndorf und Moos. Ansonsten betragen die Grundwasserflurabstände überwiegend weniger als 30 Meter, im Bereich des Forstharter Rückens liegen sie höher. Dort sind mit bis zu 50 Metern die maximalen Gesamtmächtigkeiten zu beobachten. Im Bereich des Forstharter Rückens, auf den höheren Donauterrassen südlich Langenamming und Künzing sowie im Künzinger Fenster herrschen ungespannte Grundwasserverhältnisse vor.

Von den quartären Talfüllungen der das Tertiär-Hügelland untergliedernden Flüsse und Bäche weisen nur die quartären Schotter des Vils- und Rotttals eine stärkere Grundwasserführung auf. Die sonstigen Nebentäler verfügen nur über wenig ergiebige Grundwasservorkommen bzw. fungieren als Deckschicht in Form polygenetischer Talfüllungen. Es herrschen überwiegend freie Grundwasserverhältnisse. Die Flurabstände liegen in der Regel bei wenigen Metern, die Grundwassermächtigkeiten betragen zwischen unter einem Meter bis zu mehreren Metern.

Quellen finden sich überwiegend entlang der Ausbissflächen Grundwasser gering leitender Schichten. Sie entwässern meist kleinräumige hangende Grundwasservorkommen. In Abhängigkeit von der Ausdehnung der Einzugsgebiete und der Durchlässigkeit sind die Schüttungen der Quellen sehr unterschiedlich und reichen von nicht messbaren Wasserzuflüssen an Vernässungszonen bis zu mehreren Litern pro Sekunde. Allgemein liegen die Schüttungen meist < 1 l/s. Quellen mit kleinräumigen bzw. oberflächennahen Einzugsgebieten schütten oft nur episodisch.

Für die Trinkwasserversorgung stellt im nordwestlichen Teil des Tertiär-Hügellandes die Nördliche Vollschotter-Abfolge der Oberen Süßwassermolasse den bedeutendsten Grundwasserleiter dar. Im südöstlichen Bereich werden die dort vorkommenden Einheiten der Oberen Brackwasser-/Älteren Oberen Süßwassermolasse und Oberen Meeresmolasse überwiegend von privaten Einzelversorgern, aber auch von kleineren öffentlichen Versorgern genutzt. Die im Süden die Meeresmolasse überlagernden älteren Terrassenkiese des Inns führen ebenfalls Grundwasser, das früher von privaten Einzelversorgern genutzt wurde. Die Ortenburger Schotterabfolge spielt im Bereich zwischen Forstharter Rücken und Straubing für die Trinkwasserversorgung eine bedeutende Rolle. Die dort geförderten Wässer werden häufig dem Grundwasser aus der quartären Talfüllung der Donau beigemischt. Aufgrund der starken Eisen- und Manganführung müssen die Grundwässer aus den tertiären Einheiten häufig für Trinkwasserzwecke aufbereitet werden. Die im südöstlichen Randbereich an bzw. nahe der Oberfläche anstehenden Kreide- und Juravorkommen sowie Kristallinaufragungen sind für die Trinkwasserversorgung von untergeordneter, lokaler Bedeutung. Die Thermalwasserbohrungen von Bad Griesbach erschließen Grundwässer aus dem Malm sowie untergeordnet der Unteren Meeresmolasse und dem Kristallin im tieferen Untergrund und dienen aufgrund ihrer erhöhten Temperaturen (bis zu 60 °C), ihrer hohen Gesamtmineralisation (> 1000 mg/l gelöste Stoffe) und ihrer speziellen chemischen Zusammensetzung (Fluor-, Schwefelführung) balneologischen Zwecken. Eine weitere Besonderheit stellen die oberflächennah vorkommenden, durch hohe Schwefelwasserstoffkonzentrationen gekennzeichneten Schwefelwässer in der Oberen Meeresmolasse dar, wie beispielsweise in Bad Höhenstadt und Pilzweg, die in der Vergangenheit für Kurzwecke genutzt wurden. Vor allem im Bereich der südöstlichen Täler können die Wässer der tieferen Schichten der Oberen sowie Unteren Meeresmolasse erhebliche Methangasgehalte führen, die früher energetisch durch sogenannte Gasbrunnen genutzt wurden.

Tertiärbuchten im Bayerischen Wald, intrakristallines Tertiär und Braunkohlentertiär (OSM)

Nordöstlich des Donaurandbruchs ziehen sich erosive Rinnen tief in das Grundgebirge des Bayerischen Waldes hinein. Diese sind mit tertiären Sedimenten gefüllt und werden daher als Tertiärbuchten bezeichnet. Die meisten dieser Strukturen verlaufen an vorherrschenden tektonischen Lineamenten orientiert Nord–Süd und haben nur eine geringe West–Ost-Ausdehnung von ein bis zwei Kilometern. An ihrem Nordende verflachen die Rinnen und deren Füllungen keilen wannenförmig aus. Infolge von Hebungsprozessen bereits erodierte Fortsetzungen nach Norden hin sind wahrscheinlich.

Von West nach Ost lassen sich sechs Buchten abgrenzen (Abb. 2-5). Allein die Hengersberger Bucht weicht dabei vom Schema des N–S-Verlaufes ab. Sie greift sehr weit in W–E- bzw. NW–SE-Richtung in das Kristallin hinein und besitzt eine wesentlich größere Ausdehnung als die übrigen Buchten.

Betrachtet man die durch Bohrungen nachgewiesene Grundgebirgs-Deckfläche nordöstlich des Donaurandbruchs, so lässt sich ein schmaler, höchstens 2 bis 3 km breiter Streifen parallel zum Donaurandbruch vom Bereich der eigentlichen tertiären Rinnen unterscheiden (Abb. 2-5). Nahe dem Donaurandbruch liegt diese Deckfläche auf 300 bis 310 m NN und entspricht der Quartärbasis im Donautal. Innerhalb der Tertiärbuchten hingegen liegt die Kristallinoberfläche weit unterhalb der Quartärbasis des Donautals und erreicht Tiefen von 220 bis 230 m NN in der Hengersberger und Steinacher Bucht bzw. 180 bis 190 m NN in der Hunderdorfer und Niederwinklinger Bucht.

Derartige Übertiefungen werden mit einer Anlage der Talungen vor oder während der Aktivität des Donaurandbruchs erklärt; die Talbildung muss demnach bereits im frühen Miozän erfolgt sein. Die heutigen Tertiärbuchten stellen somit die Reste ursprünglich größerer, vor der Hebung des Bayerischen Waldes bereits vorhandener Rinnenfüllungen dar, die in ihren nördlichen, stärker gehobenen Bereichen bereits vollständig erodiert wurden. Eine Verbindung zu fluviatilen Systemen im Norden der Böhmischen Masse wird aufgrund der Interpretation von tektonischen Lineamenten angenommen (LEHRBERGER et al. 2003).

Südlich der Donau im Kristallin des Neuburger Waldes treten um Rittsteig den Füllungen der Tertiärbuchten vergleichbare Sedimente auf. Diese Rittsteiger Schichten stellen die infolge fortgeschrittener Erosion zu Einzelvorkommen aufgelösten Reste einer in ihren Umrissen nur noch grob rekonstruierbaren, wohl N–S bis NW–SE verlaufenden Tertiärbucht dar (BAUBERGER & UNGER 1984: Abb. 18), deren Rinnensohle zwischen 320 und 400 m NN liegt. Reste von Rittsteiger Schichten unterlagern auch die miozänen Grobsedimente des intrakristallinen Tertiärs (s. u.) in dessen südlichsten Vorkommen.

Die Sedimente der Tertiärbuchten und die Rittsteiger Schichten bestehen überwiegend aus feinklastischen Bildungen (Tone und Schluffe), in die neben einzelnen gröberklastischen Einschaltungen (Fein- bis Mittelsande, selten Grobsande bis Feinkiese) Kohle führende Lagen und Flöze in Form von Kohletonen, unzersetzten Hölzern oder faserig-blättrigen Braunkohlen im Dezimeterbis Meterbereich eingeschaltet sind. Sie ähneln darin dem Braunkohlentertiär (OSM) unter dem Quartär des Donautals, weisen aber deutlich höhere Kaolinitgehalte auf, während Karbonatanteile fehlen. Die Komponenten der sandigen bis feinkiesigen Lagen, die vor allem an der Basis und an den Rändern der Buchten vorkommen, sind nur wenig gerundet und belegen damit geringe Transportweiten.

Demgegenüber gilt das Braunkohlentertiär (OSM) unter dem Quartär des Donautals der Planungsregion 12 Donau-Wald als südlichster Ausläufer des Sedimentationsraums des Naabtertiärs, dessen Liefergebiet das Naab-System bildet. Die bis zu 200 m mächtigen Feinsedimente mit kohligen Lagen ähneln lithologisch den Füllungen der Tertiärbuchten, sind dabei aber sandreicher sowie Karbonat führend und zeigen innerhalb der Region einen fließenden Übergang zu den limnischen Süßwasserschichten der Molasse (s.o.), für die eine Schüttung aus Süden angenommen wird.

Die größten Mächtigkeiten der tertiären Bucht- bzw. Rinnenfüllungen treten mit über 120 m in der Steinacher, Hunderdorfer und Niederwinklinger Bucht auf. Demgegenüber erreichen die Rittsteiger Schichten (Rest-)Mächtigkeiten von höchstens 40 m.

Die Hengersberger Bucht (auch: Hengersberg-Schwanenkirchener Bucht) weicht sowohl bezüglich ihres Verlaufs als auch ihrer Ausdehnung vom Erscheinungsbild der anderen Tertiärbuchten ab. Sie ist an ihrer Mündung ca. 7 km breit, ihre Achse verläuft auf einer Länge von 15 km zunächst in W–E-, dann in NW–SE-Richtung, wo die Muldenbreite kurz vor dem Talschluss noch 2 bis 3 km beträgt. Im Süden trennt sie nur ein schmaler Kristallinkeil, in dem auch mesozoische Erosionsreste erhalten sind, vom Donautal.

Neben dem miozänen Braunkohle führenden Tertiär finden sich in der Hengersberger Bucht jüngere Sedimente, die dem Obermiozän zugerechnet werden. Es handelt sich um Sande und Kiese, untergeordnet auch Schluffe und Tone, die flächig und diskordant den miozänen Feinsedimenten bzw. direkt dem Kristallin auflagern. Ihre Verbreitung beschränkt sich auf den Ostteil der Bucht, wo sie nach GRIMM (1957) Mächtigkeiten um 25 bis 30 m erreichen. OBERMEIER (2004) geht davon aus, dass auf einem ehemals weit größeren Areal Mächtigkeiten bis zu 50 m erreicht wurden.

Im Süden des Kristallinen Grundgebirges der Planungsregion 12 Donau-Wald, im Bereich des Blattgebiets L 7346 Waldkirchen, treten in sich geschlossene, intrakristalline Becken auf, die mit tertiären Sedimenten gefüllt sind. Diese Quarz-dominierten limnisch-fluviatilen, überwiegend sandig-kiesigen, z. T. schluffigen Bildungen mit meist nur dünnen schluffig-tonigen Einschaltungen wurden auf einem unregelmäßigen Paläorelief abgelagert und erreichen Mächtigkeiten bis zu 30 m. Das Auftreten von Kaolin spricht dabei für eine Entstehung in warmem Klima, wahrscheinlich im Miozän (GALADÌ-ENRÌQUEZ 2011).

Die Feinsedimente der Tertiärbuchten werden hydrogeologisch als Mischtyp Grundwasserleiter/ Grundwassergeringleiter klassifiziert. Lokal ausgebildete kies- und sandreichere Rinnen oder Linsen, z. T. in Form von Kristallinzersatz geringer Transportweite, können flächenmäßig nicht abgegrenzt und damit nicht separat bewertet werden. Eine Grundwasseroberfläche kann aufgrund nur lokal durchlässiger Bereiche nicht konstruiert werden. Die Grundwasser führenden Schichten sind in der Regel von mächtigen, gering durchlässigen Schichtpaketen überdeckt, daher ist das Grundwasser in Brunnen oder Grundwassermessstellen stets gespannt. Artesische Verhältnisse sind nur im Braunkohlentertiär (OSM) südlich des Donaurandbruchs bekannt.

Die intrakristallinen Tertiär-Vorkommen sind in ihren gröberen Abschnitten als Poren-Grundwasserleiter mit hoher Durchlässigkeit bei relativ geringer Ergiebigkeit zu klassifizieren. Lediglich das Vorkommen S Hutthurm wird für die lokale Versorgung wasserwirtschaftlich genutzt.

Kristallines Grundgebirge des Oberpfälzer-Bayerischen Waldes

Die Gesteine des Kristallinen Grundgebirges, die im Bayerischen Wald zu Tage treten, nehmen rund zwei Drittel der Planungsregion 12 Donau-Wald ein und bilden somit flächenmäßig den wichtigsten hydrogeologischen Teilraum (Abb. 1-1). Sie bauen eine Mittelgebirgsregion zwischen 300 m und über 1400 m NN auf, die durch den NW–SE verlaufenden Donaurandbruch nach SW hin vom Dungau abgegrenzt wird. Das Kristallingebiet der Planungsregion 12 Donau-Wald bildet als Teil des Moldanubikums den SW-Rand der Böhmischen Masse und wird durch den NW–SE streichenden Bayerischen Pfahl in den Vorderen Bayerischen Wald (mit Passauer Wald im SE und dem östlichen Rand des Regensburger Waldes im NW) und den Hinteren Bayerischen Wald geteilt.

Im Vorderen Bayerischen Wald dominieren hochmetamorphe, z. T. anatektische Gneise sowie Granitoide, die aus der völligen Aufschmelzung der Metamorphite hervorgegangen sind (Diatexite). Weite Bereiche des Hinteren Bayerischen Waldes werden dagegen von monotonen Paragneis-Abfolgen aufgebaut, in die örtlich "bunte Serien" von Metakarbonaten und Metavulkaniten eingeschaltet sind. Während der variszischen Gebirgsbildung drangen im gesamten Bayerischen Wald granitische bis dioritische Magmen in die metamorphen Serien ein und bildeten ausgedehnte Plutone. Darüber hinaus treten im gesamten Moldanubikum vereinzelt auch basische und Graphit führende Metamorphite sowie Kalksilikatfelse auf.

Die Trennlinie zwischen Vorderem und Hinterem Bayerischen Wald, der sogenannte Pfahl, sowie Abschnitte des Donaurandbruchs (Aicha-Halser-Nebenpfahl) und der Rundinger Zone werden von Tektoniten (Mylonite und Kataklasite) aufgebaut, in die hydrothermale Quarzgänge eingeschaltet sind.

Die Gesteine des Kristallinen Grundgebirges waren während der tektonischen Hebungsvorgänge hauptsächlich im Tertiär bei feuchtwarmem, subtropischem Klima einer intensiven Verwitterung ausgesetzt. Auf den gehobenen Bruchschollen und in Bereichen tektonischer Beanspruchung unterlag das Kristallin dabei einer verstärkten Auflockerung und Zersetzung. Mit Ausnahme von Felsfreistellungen in Gipfelregionen und an Steilhängen sind alle kristallinen Gesteinseinheiten daher von einer unterschiedlich ausgeprägten, sandig-lehmigen bis sandig-grusigen Zersatzzone bedeckt, die bis zu 60 m Mächtigkeit erreichen kann. Diese zusammenfassend als Regolith bezeichneten Verwitterungsdecken werden in ihren unteren Partien von grobkiesigem bis grobsandigem mit Kristallinbrocken und -blöcken durchsetztem Grus aufgebaut. Nach oben hin erfolgt bei rascher Korngrößenabnahme ein zunehmender Einfluss der chemischen Verwitterung. Hier sind die Kalifeldspäte durch Hydrolyse weitgehend kaolinisiert und bilden die tonig-lehmige Matrix der verwitterungsresistenten Komponenten, z. B. Quarz.

Abb. 2-6: Blick vom Pfahl bei Regen auf den 1457 m hohen Arber als höchste Erhebung des Oberpfälzer-Bayerischen Waldes und der Planungsregion 12 Donau-Wald.

Bedingt durch den unterschiedlichen Mineralbestand und die unterschiedlichen Kluftmuster der Ausgangsgesteine haben sich aus den Plutoniten und Metamorphiten verschiedene Verwitterungsprodukte gebildet. Zersatzdecken aus Graniten und Dioriten sind überwiegend grusig-sandig aufgebaut. Die aus epi- wie katazonalen Metamorphiten (Phyllit, Glimmerschiefer, Gneis, Amphibolit) sowie den Ultrametamorphiten (Diatexit) hervorgegangenen Regolithe weisen hingegen eher eine sandig-lehmige Zusammensetzung auf. Nicht von Umlagerungsprozessen betroffene Bereiche der Zersatzdecken, die Saprolithe, lassen dabei häufig noch die ursprüngliche Textur des Ausgangsgesteins und reliktische Klüfte bzw. Kluftmineralisationen erkennen (vgl. Abb. 2-9).

Im Pleistozän kam es vielfach zu einer Umlagerung und Abtragung der Zersatzdecken und damit zu einer weiteren Verwitterung des freigelegten Kristallinen Grundgebirges. Während der Kaltzeiten wurde der tertiäre Zersatz über dem undurchlässigen Dauerfrostboden stark durchfeuchtet und durch den anhaltenden Frost-Tau-Wechsel bereits bei geringem Gefälle gravitativ umgelagert. Dadurch entstanden lehmig-sandige Fließerden von bis zu fünf Metern Mächtigkeit, die oberhalb von 800 bis 1000 m NN, infolge der Wirkung des Firneises der letzten Kaltzeit, stark mit Grus und Steinen durchsetzt und verfestigt sind ("Firneisgrundschutt"). Glaziale Akkumulationen in Form von Nah-Moränen treten nur vereinzelt in kleinen, isolierten Vorkommen in den Hochlagen des Hinteren Bayerischen Waldes auf.

Wo die tertiären Zersatzdecken vollständig abgetragen wurden, unterlag das kristalline Festgestein den Kräften der Insolations- und Frostverwitterung. Die dadurch bedingte Kluftaufweitung führte, je nach Homogenität des Gesteins, zur Bildung von Blockfeldern, Hangschutt und Felsfreistellungen.

Abb. 2-7: Konzeptionelle Modellvorstellung zur Entstehung von Verwitterungs- und Klüftungsbereichen im Bayerischen Wald (aus RUBBERT 2008).

Abbildung 2-7 veranschaulicht die im Folgenden erläuterte Entstehung von Verwitterungs- und Klüftungsbereichen im Bayerischen Wald: Die während der variszischen Orogenese im Devon bis Karbon gebildeten Metamorphite mit karbonzeitlichen Granit- bis Diorit-Intrusionen sind durch überwiegend herzynisch orientierte Kluftsysteme und Schwächezonen geprägt (1). Im Verlauf der postvariszischen Erdgeschichte kommt es wiederholt zu Bewegungen entlang dieser Lineamente. Die regionale Sedimentbedeckung des Grundgebirges wurde bis zum Ende des Mesozoikums vollständig erodiert. Insbesondere während des subtropischen Klimas im Tertiär unterlagen die kristallinen Einheiten einer intensiven Verwitterung mit Verlehmung und Bildung mächtiger Zersatzdecken (2). Die entstandene Rumpffläche wurde postmiozän durch erneute Bruchtektonik zerlegt und abhängig vom Maß der Heraushebung weiter erodiert (3). Die pleistozäne Erosion wirkte besonders in den Gipfelbereichen und führte zu einer Abtragung und Umlagerung der Zersatzdecken mit einer Freilegung des unverwitterten Kristallins (4). Während der glazialen Perioden kam es, bedingt durch oberflächennahes Auftauen über dem stauenden Permafrostbereich, im periglazialen Milieu zur großflächigen Bildung von Fließerden. Dadurch freigelegtes Kristallingestein unterlag der Insolations- und Frostverwitterung mit Kluft- und Blockbildung. Im glazialen Milieu entstanden verfestigte Fließerden (5). Mit der Bildung von Mooren und Talauen im Holozän entstand das heutige Landschaftsbild (6).

Die geologischen Vorgänge während der Kalt- und Warmzeiten des Pleistozäns haben auch die bereits im Tertiär angelegten Täler wechselweise aufgefüllt und wieder ausgeräumt und dabei ausgestaltet. Die Zusammensetzung der Talfüllungen ist von den örtlichen Gegebenheiten abhängig und schwankt daher stark. Sande, Kiese, Schotter und tonig-schluffiges Material sind eng miteinander verzahnt und bilden vereinzelt Terrassenreste. Vor allem in den Talauen ist tertiärer Zersatz unter jüngerer Überdeckung erhalten geblieben. Die Füllungen kleinerer steilerer Täler hingegen bestehen vorwiegend aus umgelagerter Fließerde und Abschwemmmassen.

Am Randbereich zum Dungau sind das Kristalline Grundgebirge und seine Verwitterungsbildungen bereichsweise von äolischen Sedimenten bedeckt, die während der Kaltzeiten als kalkreicher Staub aus der Donauniederung ausgeblasen wurden. Lösse bzw. Lösslehme und deren Umlagerungsprodukte erreichen in Windschattenlagen Mächtigkeiten von bis zu 5 m.

Kristalline Gesteine sind im unverwitterten Zustand nahezu undurchlässig: Die primäre Porosität der Festgesteine ist mit Durchlässigkeitsbeiwerten (k_f-Werten) im Bereich von 10⁻¹⁰ bis 10⁻¹⁴ m/s (FREEZE & CHERRY 1979, MARECHAL et al. 2004) extrem gering. VERESS (2005) ermittelte an insgesamt 139 Gesteinsvarietäten des Bayerischen Waldes Gesamtporositäten, Wasseraufnahmevermögen und Druckfestigkeiten. Mit 0,62 % bis 2,34 % sind die dabei bestimmten Matrixporositäten unverwitterter Proben überaus gering. Die Grundwasserführung des unverwitterten Grundgebirges wird daher ausschließlich von dessen Klüftung bestimmt.

Alle Festgesteine des Bayerischen Waldes sind mehr oder weniger stark geklüftet, wobei sich die Bruchfugen besonders entlang von Verwerfungen scharen. Die Klüfte bilden ein dreidimensional angeordnetes anisotropes Hohlraumsystem, in dem sich das Grundwasser sammeln und dem Gefälle folgend bewegen kann. Sowohl die tektonisch angelegten Klüfte als auch die Entspannungs- und Hangzerreißungsklüfte verengen bzw. schließen sich mit zunehmender Tiefe. Die oberflächennahe Zone hingegen wirkt als Kluft-Grundwasserleiter, in dem sich aufgelockerte, gut wasserdurchlässige Bereiche mit wenig wasserdurchlässigen Felsblöcken und -partien abwechseln.

Die Ergebnisse der hydrogeologischen Kartierung im Kristallin des Bayerischen Waldes deuten – in Übereinstimmung mit den Erfahrungen von APEL & FAUTH (1977), STOBER (1995) u. a. – darauf hin, dass merkliche Unterschiede hinsichtlich der Intensität der Klüftung und damit der Grundwasserführung zwischen Intrusivkomplexen und metamorphen Gesteinen bestehen: Plutonite (Granite bis Diorite) sind im Allgemeinen stärker geklüftet als metamorphe Einheiten, da hier zusätzlich Abkühlungsklüfte in Form "zwiebelschaliger" Kluftmuster und Bruchfugen der Intrusionsmechanik ausgebildet sind, die in Oberflächennähe infolge der Druckentlastung ein offenes Kluftsystem bilden. Dies kann, ebenso wie das spröde Verhalten der Plutonite bei tektonischer Beanspruchung, zu einer blockartigen Zerlegung der Gesteine in der Auflockerungszone führen.

Das primäre Kluftnetz der metamorphen Gesteine hingegen basiert im Wesentlichen auf deren Schieferung und auf Scherkörpern, da Gneise aufgrund ihrer lagigen Textur gewisse Spannungen bruchfrei aufnehmen können (STOBER 1995). Foliationsparallele Diskontinuitäten weisen in der Regel nur ein sehr geringes Hohlraumvolumen auf, so dass die Wasserwegsamkeit des primären Kluftsystems in Metamorphiten meist geringer ist als in Plutoniten.

Schieferungsparallele Trennfugen unterliegen aber in besonderem Maße den Erosionsvorgängen und tragen so wesentlich zur Talbildung und damit zum heutigen Landschaftsbild bei. Durch Hangzerreißung entlang der Talflanken, also die gravitative Weitung dieser foliations- und damit talparallelen Klüfte im oberflächennahen Bereich, entstehen bevorzugte Wasserwegsamkeiten, die sich in einer bevorzugt hangparallelen Grundwasserbewegung ausdrücken. RAUM (2002) konnte mittels Markierungsversuchen mit Fluoreszenztracern derartigen Grundwasserfluss nachweisen. Die südwestlich der Pfahl-Störungszone weit verbreiteten Diatexite besitzen infolge ihrer Aufschmelzung auch hinsichtlich der primären Kluftmuster ein granitisches Gefüge. Sie sind dabei eng mit Metamorphiten verzahnt.

Neben den gefügegebundenen Trennflächen existieren weitere hydraulisch wirksame Kluftsysteme. Wichtig für die Grundwasserspeicherung und -bewegung im regionalen Rahmen sind vor allem tektonische Trennfugen, die sowohl isoliert als auch in Scharen oder in Form komplexer Störungszonen auftreten können. Diese Störungen entstehen infolge einer Zerrüttung des Felses durch Scherbewegungen zwischen einzelnen Gesteinsblöcken. Intensität und Orientierung solcher tektonischen Klüfte folgen regionalen Mustern und weisen nur geringe gesteinsspezifische Unterschiede auf (ZEITLHÖFLER 2006, 2007, siehe auch Kap. 3.3). Mit feinkörnigem Material plombierte Störungen (Kakirite, Mylonite), wie beispielsweise weite Bereiche der Pfahl-Störungszone, sind durch eine geringe Wasserwegsamkeit gekennzeichnet, werden aber meist von stärker geklüfteten Bereichen im kompakten Nebengestein begleitet, die eine entsprechend erhöhte Grundwasserführung aufweisen (STOBER 1995).

Der Kluft-Grundwasserleiter des unverwitterten Kristallins geht nach oben hin von einer wechselnd mächtigen Zone der Kleinzerklüftung sukzessive in die mit Restblöcken belegte Verwitterungszone über (z. B. Abb. 2-8). Die Mächtigkeit dieser Zersatzdecke unterliegt starken Schwankungen. Insbesondere im Bereich von Störungen greifen die grusig-sandigen bis sandig-lehmigen Verwitterungsbildungen taschen- und trichterförmig tief in das unzersetzte Gestein ein (Abb. 2-11). Dieser autochthone Kristallinzersatz (Saprolith) wird gemeinhin als isotroper feinkiesig-sandiger Poren-

Abb. 2-8: Anschnitt der Verwitterungszone im dioritischen Metatexit (Ultrametamorphit) im Steinbruch Saunstein N Schönberg: stark zersetzte, teilweise verlehmte Bereiche wechseln kleinräumig mit unzersetzten Partien unterschiedlich intensiver Wollsackverwitterung (Höhe des Aufschlusses ca. 4 m).

Grundwasserleiter bezeichnet (z. B. APEL & FAUTH 1977, DOBNER 1988). Geländebefunde der hydrogeologischen Kartierung zeigen aber in Übereinstimmung mit Beobachtungen von RUBBERT (2008) (siehe Abb. 2-9), dass die mehr oder weniger deutlich ausgeprägten reliktischen Klüfte des in-situ Zersatzes bevorzugte Grundwasserfließwege darstellen (DIEPOLDER 2007). Derartige präferentielle Wasserführung entlang reliktischer Klüfte in der Verwitterungszone konnten auch RAUM (2002) bzw. ZEITLHÖFLER & RAUM (2005) anhand von Markierungsversuchen nachweisen. Anisotrope Grundwasserbewegungsmuster kennzeichnen daher nicht nur das unverwitterte Kristallin und die Auflockerungszone, sondern trotz erheblicher Porendurchlässigkeit auch den autochthonen Kristallinzersatz.

Demgegenüber stellen die jüngeren, meist pleistozänen Deckschichten, die durch periglaziale Umlagerungsvorgänge aus dem tertiären Saprolith hervorgegangen sind, ausschließlich Poren-Grundwasserleiter stark wechselnder Durchlässigkeit dar. Flächenmäßig größte Verbreitung haben hierbei die sandig-lehmigen, z. T. mit Grus und Steinen durchsetzten Fließerden. In diesen Solifluktionsbildungen sind die feinkörnigen Bestandteile oft aus den oberen Hanglagen abgeführt und in flach auslaufenden Hangbereichen und Mulden akkumuliert. Fließerdedecken fungieren dadurch als kleinräumige Grundwasserspeicher: die steileren (oberen) Bereiche sind wasserdurchlässig, am Übergang zu den lehmreicheren und somit undurchlässigen Partien treten Vernässungszonen und Quellhorizonte auf. In Höhen über 800 bis 1000 m NN sind die Fließerdedecken infolge der Wirkung des Firneises der letzten Kaltzeit stark verfestigt und mit Steinen und Blöcken durchsetzt ("Firneisgrundschutt"). In Bereichen fehlenden Feinkornanteils zeigen sich die verfestigten Fließerden porös und gut wasserdurchlässig. Hier treten Grundwasservorkommen stark schwankender Ergiebigkeit auf, die – je nach Basisabdichtung durch feinkörniges Material – als eigenständiger Grundwasserhorizont mit Quellen ausgebildet oder mit dem Grundwasser des Kristallinzersatzes in hydraulischer Verbindung stehen können.

Abb. 2-9: Quellaustritt aus einer reliktischen Quarzkluft im sandig-grusigen Granitzersatz, Steinbruch Fischl E Zwiesel.

Weitere Zeugen pleistozäner Vergletscherung stellen die auf einige Hochlagen des Hinteren Bayerischen Waldes beschränkten Moränen dar. Diese sind als typische Nahmoränen mit geringer Transportweite grobklastisch ausgebildet und damit gut wasserdurchlässig, bleiben jedoch aufgrund ihrer lokalen Verbreitung hydrogeologisch bedeutungslos.

Die Grundwasserführung der Talfüllungen ist aufgrund des (variablen) Feinkornanteils oft gering. Gröberkörnige Partien sind jedoch gut wasserdurchlässig und führen Grundwasser, das hydraulisch an die Vorflut angebunden ist.

Auffällig für das Grundgebirge ist die ausgesprochen hohe Quellendichte, wobei die Quellen aber meist nur eine geringe Schüttung aufweisen (z. B. Abb. 2-10). Quellen mit Schüttungen > 3 l/s sind selten. Die Quellen treten in unterschiedlichen Höhenlagen und Hangabschnitten aus, ganz überwiegend in Form der für Kristallingebiete typischen Schuttquellen. Es handelt sich dabei meist um Verengungs- oder Stauquellen an Ein- und Auflagerungen gering durchlässigen Materials (siehe Abb. 2-11). Kluftquellen sind in der Regel auf orographisch tief gelegene Bereiche beschränkt, dort jedoch aufgrund der intensiven Verwitterung oft nicht als solche erkennbar.

Stärker schüttende Quellen des Kristallinen Grundgebirges zählen bevorzugt zu den Blockmaterialgeprägten Fließ- und Linearquellen, gering schüttende Quellen zu organisch geprägten Fließ-,

Abb. 2-10: Quellaustritt an einer Kluft in Diatexiten (Ultrametamorphiten) des Kristallinen Grundgebirges E Seiboldenreuth.

Linear- und Sickerquellen im Sinne des Quelltypenkatalogs (PROJEKTGRUPPE AKTIONSPROGRAMM QUELLEN 2004) oder sind als diffuse Wasseraustritte bzw. Vernässungszonen ausgebildet.

Viele perennierende Quellen und Quellgruppen sind für die öffentliche oder private Trinkwasserversorgung und für Brauchwasserzwecke gefasst. Insbesondere in landwirtschaftlich genutzten Gebieten und Siedlungsbereichen sind zahlreiche Quellen drainiert. Die Drainageausläufe können dabei oft mehrere hundert Meter vom eigentlichen Austrittspunkt der Quellen entfernt sein.

Ausgeprägte saisonale, in unterschiedlichen benachbarten Quellen zeitversetzte Schüttungsschwankungen und unterschiedliche Schwankungen der Quellwassertemperaturen im Jahresverlauf belegen komplexe hydraulische Verhältnisse im Kristallinzersatz und in den quartären Deckschichten (u. a. RUBBERT & BENDER 2007, RUBBERT 2008). Demnach ist zwischen (Wieder-) Austritten des Hangzugswassers, Quellen des Zwischenabflusses (Interflow) und Quellen des eigentlichen (tieferen) Grundwassers zu unterscheiden, wobei viele Quellen Mischtypen mit zeitlich schwankenden Anteilen der Komponenten darstellen (siehe Abb. 2-11). Aufgrund der generell geringen Mineralisation der Grundwässer im Kristallinen Grundgebirge ist die jeweilige Zuordnung der Quelltypen hydrochemisch nur schwer nachzuweisen, die Radongehalte des Quellwassers geben aber deutliche Hinweise (Kap. 4.3).

Das Grundwasserregime im Kristallinen Grundgebirge lässt sich folgendermaßen zusammenfassen: Auflockerungszone, Kristallinzersatz, quartäre Deckschichten und Talfüllungen bilden einen einheitlichen, durch gering durchlässige Einschaltungen heterogen gegliederten Grundwasserleiter ohne klar definierte Grundwasseroberfläche und mit diffuser, nicht klar definierter Grundwassersohle in stark wechselnder Tiefe innerhalb des kristallinen Gesteinsverbands. Dabei sind verschiedene Grundwasserfließwege ausgebildet (siehe Abb. 2-11):

- Relativ schneller, oberflächennaher Abfluss (Hangzugwasser) in der aufgelockerten Bodenzone, den porösen Bereichen der Deckschichten sowie z.T. den obersten Partien der Verwitterungszone, bereichsweise über gering durchlässigen Einschaltungen als schwebendes Grundwasser
- Zwischenabfluss innerhalb der Verwitterungszone mit geringen Fließgeschwindigkeiten in der porösen Matrix und schnellerem Fließen entlang reliktischer Klüfte
- Schneller Zwischenabfluss innerhalb der stark geklüfteten Auflockerungszone
- Tiefenströmung mit langen Fließwegen über Klüfte und Schwächezonen des unverwitterten Festgesteins

3 Hydrogeologische Einheiten und ihre Eigenschaften

3.1 Hydrogeologische Einheiten

In Tabelle 3-8 sind die hydrogeologischen Einheiten der HK100 der Planungsregion 12 Donau-Wald aufgelistet. Sie enthält stichpunktartig Angaben zur Gesteinsausbildung, Mächtigkeit sowie eine hydrogeologische Kurzbeschreibung. Ergänzend sind die Einheiten mit Kürzeln hydrogeologisch charakterisiert. Eine Erläuterung der Kürzel findet sich in den Tabellen 3-1 bis 3-7.

Tab. 3-1: Hydrogeologische Klassifikation

Hydrogeologische Klassifikation	Kürzel
Lockergesteine	
Poren-Grundwasserleiter	
Poren-Grundwasserleiter mit hoher Ergiebigkeit (Poren-Grundwasserleiter mit hoher bis sehr hoher Durchlässigkeit und großer Mächtigkeit)	ph
Poren-Grundwasserleiter mit mittlerer Ergiebigkeit (Poren-Grundwasserleiter mit mäßiger bis mittle- rer Durchlässigkeit und großer Mächtigkeit bzw. Poren-Grundwasserleiter mit hoher bis sehr hoher Durchlässigkeit und geringer Mächtigkeit)	pm
Poren-Grundwasserleiter/Grundwassergeringleiter mit geringer oder (stark) variabler Ergiebigkeit (Poren- Grundwasserleiter mit mäßiger bis mittlerer Durchlässigkeit und geringer Mächtigkeit bzw. Poren- Grundwasserleiter/Grundwassergeringleiter mit geringer Durchlässigkeit und großer Mächtigkeit bzw. (stark) variabler Durchlässigkeit und Mächtigkeit)	pg
Grundwassergeringleiter	
Lockergesteins-Grundwassergeringleiter ohne nennenswerte Durchlässigkeit	lg
Festgesteine	
Kluft-Karst-Grundwasserleiter	
Kluft-Karst-Grundwasserleiter mit hoher Verkarstungsneigung und mäßiger bis mittlerer Gebirgsdurchlässigkeit	kkm
Kluft-(Karst-)Grundwasserleiter mit geringerer Verkarstungsneigung und geringer bis mäßiger Gebirgsdurchlässigkeit oder Kluft-(Karst-)Grundwasserleiter/Grundwassergeringleiter mit (stark) variabler Gebirgsdurchlässigkeit	kkg
Kluft-(Poren-)Grundwasserleiter	
Kluft-(Poren-)Grundwasserleiter mit mäßiger bis mittlerer Gebirgsdurchlässigkeit	kpm
Kluft-(Poren-)Grundwasserleiter mit geringer bis mäßiger Gebirgsdurchlässigkeit oder Kluft-(Poren-)Grundwasserleiter/Grundwassergeringleiter mit (stark) variabler Gebirgsdurchlässigkeit	kpg
Kluft-Grundwasserleiter des Grundgebirges	
Kluft-Grundwasserleiter/Grundwassergeringleiter mit höherer Klüftungsneigung und geringer bis mäßiger Gebirgsdurchlässigkeit (Magmatite)	kmg-ma
Kluft-Grundwasserleiter/Grundwassergeringleiter mit (stark) wechselnder Klüftungsneigung und geringer bis mäßiger Gebirgsdurchlässigkeit (Ultrametamorphite)	kmg-ume
Kluft-Grundwasserleiter/Grundwassergeringleiter mit geringerer Klüftungsneigung und geringer bis mäßi- ger Gebirgsdurchlässigkeit (Metamorphite)	kmg-me
Grundwassergeringleiter	
Festgesteins-Grundwassergeringleiter ohne nennenswerte Gebirgsdurchlässigkeit	fg

Tab. 3-2: Leitercharakter.

Leitercharakter	Kürzel
Grundwasserleiter	GWL
Mischtyp Grundwasserleiter/-geringleiter	GWL/GWG
Grundwassergeringleiter	GWG

Tab. 3-3: Durchlässigkeit.

Durchlässigkeit	Wertebereich [m/s]	Kürzel
sehr hoch	>10 ⁻²	1
hoch	10 ⁻³ -10 ⁻²	2
mittel	10 ⁻⁴ -10 ⁻³	3
mäßig	10 ⁻⁵ -10 ⁻⁴	4
gering	10 ⁻⁷ -10 ⁻⁵	5
sehr gering	10 ⁻⁹ -10 ⁻⁷	6
äußerst gering	<10 ⁻⁹	7
hoch bis sehr hoch	>10 ⁻³	8
mäßig bis mittel	10 ⁻⁵ -10 ⁻³	9
äußerst gering bis gering	<10 ⁻⁵	10
stark variabel		11
gering bis mäßig	10 ⁻⁶ -10 ⁻⁴	12

Tab. 3-4: Gesteinsart.

Gesteinsart	Kürzel
Sediment	S
Metamorphit	Me
Magmatit	Ма

Tab. 3-5: Verfestigung.

Verfestigung	Kürzel
Lockergestein	L
Mischtyp Locker-/Festgestein	L/F
Festgestein	F

Tab. 3-6: Hydrogeochemischer Gesteinstyp.

Hydrogeochemischer Gesteinstyp	Kürzel
silikatisch	S
silikatisch mit organischen Anteilen	s/o
silikatisch/karbonatisch	m
silikatisch/karbonatisch mit organischen Anteilen	m/o
karbonatisch	k
organisch	0
sulfatisch	g
sulfatisch/halitisch	g/h
halitisch	h

Tab. 3-7: Hohlraumart.

Hohlraumart	Kürzel
Poren	Р
Kluft/Poren	K/P
Kluft	К
Kluft/Karst	K/Ka
Karst	Ka

Hydrogeochem. Gesteinstyp		ε	ε	S	٤
Hohlraumart		٩	٩	٩	٩
Verfestigung				_	
Gesteinsart		S	S	S	S
Durchlässigkeit		თ	12	12	വ
Leitercharakter		GWL	GWL	GWL	GWL
Hydrogeol. Klassifikation		hh/ pm/ pg	bd /md	mq	бd
Hydrogeologische Kurzbeschreibung		regional bis überregional bedeutende Poren-Grundwasser- leiter mit überwiegend mäßigen bis hohen Durchlässig- keiten und Ergiebigkeiten, im Vilstal aufgrund höheren Feinkornanteils insgesamt geringeren Durchlässigkeiten, bereichweise hydraulische Wechselwirkung mit unterla- gernden Kiesen und Sanden der Molasse (z.B. im Donautal im Künzinger Fenster mit Ortenburger Schotterabfolge)	lokal bedeutende Poren-Grundwasserleiter mit geringen bis mittleren Durchlässigkeiten und Ergiebigkeiten	lokal bedeutende Poren-Grundwasserleiter mit geringen bis mittleren Durchlässigkeiten und Ergiebigkeiten	Poren-Grundwasserleiter mit überwiegend geringen, lokal mäßigen Durchlässigkeiten, aufgrund geringer Ergiebig- keiten für die Trinkwasserversorgung wenig bedeutend
Gesteinsausbildung und Mächtigkeit	GLAZIALE SCHOTTER	Kies, sandig; Mächtigkeiten bis ca. 15 m	Kies, sandig, bis Sand mit höhe- rem Feinkornanteil; Mächtigkeiten bis über 5 m	Kies und Sand, mit erhöhtem Schluff- und Tonanteil; Mächtig- keiten 2 bis 5 m	Sand mit Schluff und Ton, lokal kiesig; Mächtigkeiten 2 bis 5 m
Hydrogeologische Einheit	QUARTÄR / FLUVIO	Quartär des Donau-, Isar-, Inn- und Viistals	Quartär der Täler von Rott, Großer und Kleiner Laber, Aiterach sowie wei- terer Nebentäler südlich der Donau, südlich der Donau, vils sowie altplei- stozäne Terrassen- reste	Quartär der Neben- täler nördlich der Donau	Quartär der klei- neren Nebentäler südlich der Donau (Seitentäler von Donau, Inn und Rott)

Tab. 3-8: Hydrogeologische Legendeneinheiten der HK100 der Planungsregion 12 Donau-Wald und deren Eigenschaften.

dfrouverse						
Hydrogeochem. Hydrogeochem.	S	S			٤	ω
Hohlraumart	٩	٩			٩	٩
Verfestigung	_	_			<u>ـ</u>	
Gesteinsart	S	S			S	თ
Durchlässigkeit	า	7			12	12
Leitercharakter	GWL	GWL			GWL	GWL
Hydrogeol. Klassifikation	бd	бd			md	шd
Hydrogeologische Kurzbeschreibung	Poren-Grundwasserleiter mit überwiegend geringen, lokal mäßigen Durchlässigkeiten, aufgrund geringer Ergiebigkeiten für die Trinkwasserversorgung wenig bedeutend	im Kristallinen Grundgebirge wenig bedeutende Poren- Grundwasserleiter mit geringer Grundwasserführung auf- grund des (variablen) Feinkornanteils, gröberkörnige Par- tien oft mit mäßigen bis mittleren Durchlässigkeiten und mit der Vorflut in hydraulischem Kontakt stehend, randliche Übergänge zu Fließerden meist grundwasserfrei			kleinräumig verbreitete Poren-Grundwasserleiter mit gerin- gen bis mäßigen Durchlässigkeiten, lokal bei erhöhtem Anteil bindiger Horizonte auch mit sehr geringen Durch- lässigkeiten, in isolierten Hochlagen oft grundwasserfrei, zahlreiche lokal begrenzte hangende teilweise recht er- giebige Grundwasservorkommen, die vielfach gut ver- folgbare Quellhorizonte bedingen und früher häufig durch Hausbrunnen genutzt wurden	kleinräumig verbreitete Poren-Grundwasserleiter mit geringen bis mäßigen Durchlässigkeiten, in feinkör- nigen Partien mit sehr geringen Durchlässigkeiten, in isolierten Hochlagen oft grundwasserfrei, für die Trinkwasserversorgung in der Region geringe lokale Bedeutung
Gesteinsausbildung und Mächtigkeit	Sand und Schluff, teils tonig, teils kiesig; Mächtigkeiten 2 bis 5 m	abhängig vom Einzugsgebiet stark schwankende Zusammen- setzung aus Sand, Kies, Schotter mit wechselnden Ton-Schluff- Gehalten, teilweise mit Steinen und Blöcken, randlich oft mit Fließerden und Abschwemm- massen verzahnt; Mächtigkeiten <1 bis 5 m	AND	olasse	Sand, Fein- bis Mittelkies mit Schluff- und Toneinschaltungen, meist karbonatfrei; Mächtigkeiten bis ca. 15 m	Quarzkies, sandig, schluffig, tonig (Kaolinit), mit Schluff- und Tonein- schaltungen, in oberen Partien häufig Quarzkonglomerat, kar- bonatfrei; Mächtigkeiten bis ca. 15 m
Hydrogeologische Einheit	Quartär der klei- neren Nebentäler nördlich der Donau	polygenetische Talfüllungen, einschl. Schwemmfächer, nördlich der Donau	TERTIÄR-HÜGELLA	Obere Süßwasserm	Jüngere Obere Süßwassermolasse (Hangend-, Misch- und Moldanubische Serie)	Quarzrestschotter

-	F	0/6		-	5
<u> </u>	<u> </u>	<u> </u>		2	
<u>ц</u>	<u>ш</u>			<u>.</u>	· .
S S	S	S C		S C	S
<u>ත</u>	, , , , , , , , , , , , , , , , , , , 	10			ດ
GWL	GWL	GWG		GWG	GWG
ш d	E d	<u>6</u>		D	D d
für Trinkwasserversorgung im Nordwesten regional bedeu- tende Poren-Grundwasserleiter mit mäßigen bis mittleren Durchlässigkeiten und Ergiebigkeiten, bei lokal höherem Anteil bindiger Horizonte mit geringen Durchlässigkeiten, mächtige Schluff- und Toneinschaltungen bilden bereichs- weise hydraulisch wirksame Trennhorizonte	Poren-Grundwasserleiter mit überwiegend mäßigen (insbes. Hoisberger Schotter), lokal auch geringen Durchlässigkeiten und Ergiebigkeiten, in isolierten Hochlagen oft grundwasserfrei, für die Trinkwasser- versorgung in der Region geringe lokale Bedeutung	überwiegend Grundwassergeringleiter, in sandig-kiesigen Partien Poren-Grundwasserleiter mit geringen bis mäßi- gen Durchlässigkeiten und geringen Ergiebigkeiten, in der Region nicht an Oberfläche ausstreichend, vereinzelt zur Trinkwasserversorgung zusammen mit quartären Schottern und Sanden des Donautals genutzt		überwiegend Lockergesteins-Grundwassergeringleiter ohne nennenswerte Durchlässigkeiten und Ergiebigkeiten, im Bereich sandiger Lagen Poren-Grundwasserleiter mit gerin- gen Durchlässigkeiten, vereinzelt zusammen mit Nördlicher Vollschotter-Abfolge zur Trinkwasserversorgung genutzt	Wechsellagerung von Poren-Grundwasserleitern und Grundwassergeringleitern mit geringen Durchlässigkeiten, Grundwasserführung gebunden an sandige Zwischenlagen, aufgrund geringer Ergiebigkeiten für die Trinkwasserversorgung nur von lokaler Bedeutung
Kies, Sand mit Schluff- und Toneinschaltungen, z.T. karbo- natisch; Mächtigkeiten bis über 100 m	Fein- bis Mittelsand, Geröll füh- rend; untergeordnet Schluff- und Toneinschaltungen (Hoisberger Abfolge: Fein- bis Mittelkies, san- dig mit Schluff- und Tonlage am Top), meist karbonatisch; Mächtigkeiten bis ca. 45 m	Schluff und Ton mit (Fein-) Sand-Einschaltungen und koh- ligen Lagen, Karbonat führend; Mächtigkeiten bis ca. 200 m	/Ältere Obere Süßwassermolasse	Schluff, Mergel und Feinsand, Glimmer führend, vereinzelt Braunkohle führend, meist kar- bonatisch; Mächtigkeiten bis zu 65 m	Schluff und Ton mit (Fein-)Sand in Wechsellagerung, vereinzelt Braunkohle führend, meist kar- bonatisch; Mächtigkeiten bis ca. 80 m
Nördliche Vollschotter-Abfolge	Fluviatile Süßwasser- schichten (inkl. Hoisberger Abfolge)	Braunkohlentertiär (OSM)	Obere Brackwasser-	Limnische Süßwasser- schichten	Obere Brackwasser-/ Ältere Obere Süßwassermolasse (Obere Brackwas- sermolasse + Limnische Untere Serie/ Limnische Süßwasser- schichten)

Hydrogeochem. Gesteinstyp	E		ε	E					
Hohlraumart	٩		٩	٩					
Verfestigung			_	Ъш					
Gesteinsart	S		S	S					
Durchlässigkeit	ത		വ	Q					
Leitercharakter	GWL		GWG GWC/	GWL/ GWG					
Hydrogeol. Klassifikation	/md		Dd .	6d					
Hydrogeologische Kurzbeschreibung	Poren-Grundwasserleiter mit mäßigen bis mittleren Durch- lässigkeiten, im nördlichen überdeckten Bereich zwischen Straubing und Forstharter Rücken aufgrund hoher Ergie- bigkeiten bedeutendes Grundwasservorkommen, in süd- lich des Vilstals aufgeschlossenen Bereichen nur lokal be- grenzte Grundwasservorkommen		Wechselfolge von Poren-Grundwasserleitern und Grund- wassergeringleitern mit geringen, bei höheren Sandanteilen mit mäßigen Durchlässigkeiten, Grundwasserführung ge- bunden an unregelmäßig auftretende sandige Anteile unter- schiedlicher Mächtigkeiten, aufgrund geringer Ergiebigkeit für die Trinkwasserversorgung lokale Bedeutung	Grundwassergeringleiter oder Poren-Grundwasserleiter mit überwiegend geringen, bei höheren Sandanteilen mit mä- ßigen Durchlässigkeiten, Grundwasservorkommen in meist an der Basis sowie in unterschiedlichen Höhenlagen und Mächtigkeiten auftretenden Sandlagen sowie in Klüften der verfestigten Feinsedimente, aufgrund geringer Ergiebigkeit für die Trinkwasserversorgung nur lokale Bedeutung					
Gesteinsausbildung und Mächtigkeit	Fein- bis Grobkies, mittel- bis grobsandig, mit geringen Schluff- und Steinanteilen, kleinräumig unterbrochen von Fein- bis Mittel- sandlagen mit wechselnder Geröllführung, weitgehend kar- bonatfrei, Mächtigkeiten bis ca. 50 m	Se	Fein- bis Mittelsand in Wechsel- lagerung mit Schluff und Ton, z. T. Mittel- bis Grobsand, Geröll führend (Litoralfazies), karbona- tisch; Mächtigkeiten bis ca. 100 m	Schluff und Ton mit Fein- bis Mittelsandeinschaltungen v. a. im basalen Bereich, teilweise Festgesteinscharakter (Mergel- stein), karbonatisch; Mächtig- keiten bis ca. 200 m					
Hydrogeologische Einheit	Ortenburger Schotterabfolge	Obere Meeresmolas:	Glaukonitsande und Blättermergel	Neuhofener Schichten					
Kreide									
--	---	--	----------	------	----	----------	----------	--------	--
Oberkreide (ungegliedert)	mittel- bis grobkörniger Quarzsandstein, oft entfe- stigt, im südöstlichen Teil des Tertiär-Hügellandes im Ortenburger Senkungsfeld an der Oberfläche ausstreichend, südlich des Donaurandbruchs im Molasseuntergrund, mit Ton-, Tonstein- und Mergel- Einschaltungen; Mächtigkeiten bis zu über 1000 m	Kluft-Poren-Grundwasserleiter und Grundwassergeringleiter mit geringen bis mäßigen Gebirgsdurchlässigkeiten, für die Trinkwasserversorgung wenig lokale Bedeutung, meist zusammen mit überlagernden Tertiäreinheiten (Braun- kohlentertiär (OSM), Ortenburger Schotterabfolge, Glau- konitsande und Blättermergel), vereinzelt mit darunterlie- gender Malm-Einheit genutzt, vereinzelt balneologische Nutzung, mit den Wässern des Malms in direkter hydrauli- scher Verbindung	bdy	SWI2	12	<u>о</u>			
Jura									
Jura (ungegliedert; Malm + untergeord- net Dogger)	Kalkstein unterschiedlicher Ausprägung mit Einschaltungen von Mergelstein und (Kalk-) Sandstein, an der Oberfläche ausstreichend oder unter quar- tärer Bedeckung als Schollen am Donaurandbruch und als tek- tonisch zerlegte Vorkommen im Ortenburger Senkungsfeld; Mächtigkeiten bis zu ca. 200 m	Kluft-(Karst-)Grundwasserleiter und Grundwassergering- leiter mit stark variabler Gebirgsdurchlässigkeit und sehr unterschiedlichen Ergiebigkeiten, besonders in Störungs- nähe Zunahme der Wasserwegsamkeiten und höhere Ergiebigkeiten zu erwarten, somit für die Trinkwasserver- sorgung lokal bedeutend, tiefengeothermische und balneo- logische Nutzung (Straubing, Bad Füssing, Bad Griesbach)	kkg G	SWL/	7			k a	
OBERPFÄLZER-BAY	/ERISCHER WALD								
Schotter und Sande des intrakristallinen Tertiärs	Wechselfolge von Kies und Sand, steinig, untergeordnet tonig- schluffig ; Mächtigkeiten bis zu ca. 30 m	kleinräumig verbreitete Poren-Grundwasserleiter mit hohen Durchlässigkeiten bei geringen Ergiebigkeiten, früher häu- fig über Quellfassungen zur lokalen Trinkwasserversorgung genutzt, heute nur noch S Hutthurm	pg/md	3WL	2		<u>ш</u>	S	

Hydrogeochem. Gesteinstyp	s/o	S	ω	S
Hohlraumart	٥	×	⋧⋴	уч
Verfestigung		ш	Ъщ	Ъщ
Gesteinsart	S	Ma	Ма	Me
Durchlässigkeit	ى	12	12/ 10	12
Leitercharakter	GWL/ GWG	GWL	GWG GWC/	GWL/ GWG
Hydrogeol. Klassifikation	6 d	kpg	kmg- ma	kmg- me
Hydrogeologische Kurzbeschreibung	Grundwassergeringleiter oder Poren-Grundwasserleiter mit geringen, in sandig-kiesigen Partien mäßigen bis mitt- leren Durchlässigkeiten, Grundwasservorkommen in san- digen bis feinkiesigen Lagen vor allem an der Basis und den Rändern der Tertiärbuchten, aufgrund geringer Ergiebigkeiten für Trinkwasserversorgung lokale Bedeutung	Grundwasserleiter mit geringen bis mäßigen Kluftdurch- lässigkeiten und geringer lateraler Ausdehnung, z.T. mit Drainwirkung auf die umgebenden Tektonite	Grundwasserleiter mit geringen bis mittleren Porendurch- lässigkeiten und reliktischer Kluftdurchlässigkeit (Zersatz) über primär ±isotropem Kluft-Grundwasserleiter/ Grundwassergeringleiter mit sehr geringen bis mäßigen Durchlässigkeiten	Grundwasserleiter mit geringen bis mäßigen Porendurch- lässigkeiten und reliktischer Kluftdurchlässigkeit (Zersatz) über stark anisotropem Kluft-Grundwasserleiter/Grundwas- sergeringleiter mit geringen bis mäßigen Durchlässigkeiten
Gesteinsausbildung und Mächtigkeit	Schluff und Ton mit Fein- bis Mittelsand-Einschaltungen, mit einzelnen Lagen von toni- gen Grobsanden bis Feinkiesen (v.a. an Basis und Rändern der Buchten), mit Einschaltungen von dm- bis m-mächtigen Braunkohlelagen und -flözen; Mächtigkeiten bis ca. 120 m; im Ostteil der Hengersberger Bucht Sand und Kies, unter- geordnet auch Schluff und Ton des Obermiozäns über den terti- ären Feinsedimenten bzw. dem Kristallin (Mächtigkeiten 25–30 m)	Hydrothermale Quarzgänge des Pfahls und Aicha-Halser- Nebenpfahls	Granite, Granodiorite und Diorite, z.T. porphyritisch, unter sandig- grusiger Zersatzdecke	Glimmerschiefer, bereichsweise mit Quarzit-Einschaltungen unter- schiedlicher Größe, unter sandig- lehmiger Zersatzdecke, größe- re Quarzitvorkommen meist ohne bzw. nur mit geringmächtigem sandig-grusigem Zersatz
tydrogeologische Einheit	sedimente der ertiärbuchten und reinsedimente les intrakristal- nen Tertiärs u.a. Rittsteiger Schichten)	Aineralgänge	saure bis interme- liäre Plutonite und Banggesteine	saure bis interme- tiäre Metamorphite, pi-/mesozonal

S	S	S	s
<u>ک</u> ۲	Хч	<u>ک</u> ۲	<u></u> Х Ф
<u></u>	<u></u>	<u></u>	<u></u>
Ae	Ae	Ae	Ae
12/ 110	12/ 110	12/ 110	~
GWL/ GWG	GWL	GWL/ GWG	GWG
kmg- me	kmg- me	kmg- ume	fg
Grundwasserleiter mit geringen bis mäßigen Porendurch- lässigkeiten und reliktischer Kluftdurchlässigkeit (Zersatz) über stark anisotropem Kluft-Grundwasserleiter/Grundwas- sergeringleiter mit sehr geringen bis mäßigen Durchlässig- keiten	Grundwasserleiter mit geringen bis mäßigen Porendurch- lässigkeiten und reliktischer Kluftdurchlässigkeit (Zersatz) über stark anisotropem Kluft-Grundwasserleiter/Grundwas- sergeringleiter mit sehr geringen bis mäßigen Durchlässig- keiten	Grundwasserleiter mit geringen bis mäßigen Porendurch- lässigkeiten und reliktischer Kluftdurchlässigkeit (Zersatz) über primär ≟isotropem Kluft-Grundwasserleiter/Grundwas- sergeringleiter mit sehr geringen bis mäßigen Durchlässig- keiten	Grundwassergeringleiter ohne nennenswerte Durchlässigkeit
Gneise und Metatexite unter san- dig-lehmiger Zersatzdecke	Amphibolite, selten Serpentinite unter sandig-lehmiger Zersatzdecke	Migmatite und Diatexite mit über- wiegend homogener Textur unter sandig-lehmiger Zersatzdecke	Kataklasite, Mylonite, Ultramylonite und deren lehmige Zersatzprodukte
Saure bis interme- diäre Metamorphite, katazonal	Basische Metamorphite	Ultrametamorphite granitischen Gefüges (Diatexite)	Tektonite

3.2 Hydraulische Kennwerte

Methodik

Zur Ermittlung der hydraulischen Kennwerte der hydrogeologischen Einheiten erfolgte die Auswertung von quasistationären Pumpversuchen an insgesamt 423 Objekten (hauptsächlich Brunnen der öffentlichen Trinkwasserversorgung, Privatbrunnen und untergeordnet Grundwassermessstellen) aus der Region und dem weiteren Arbeitsgebiet (Abb. 3-1). Es handelt sich überwiegend um (Leistungs-)Pumpversuche, die vor der Inbetriebnahme der Brunnen oder unmittelbar nach Fertigstellung der Brunnen durchgeführt wurden. Die Auswertungen erfolgten unter Berücksichtigung gespannter oder ungespannter Grundwasserverhältnisse nach DuPUIT/THIEM (z.B. LANGGUTH & VOIGT 2004). Die Ergebnisse stellen die horizontalen Durchlässigkeitsbeiwerte (k_f-Werte) der untersuchten hydrogeologischen Einheiten dar. Es muss bedacht werden, dass es sich bei den Pumpversuchen um Einlochversuche handelt. Die anhand der vorliegenden Pumpversuche ermittelten k_f-Werte stellen somit nur eine Größenordnung dar.

Abb. 3-1: Karte der Objekte mit Pumpversuchsauswertungen, differenziert nach hydrogeologischen Einheiten.

Bei mehrstufigen Leistungspumpversuchen wurde für jede Laststufe ein kr-Wert berechnet und aus diesen Einzelwerten ein Mittelwert für das betrachtete Objekt ermittelt. Die vorliegenden Brunnen in der Molasse, im Braunkohlentertiär (OSM), in den Tertiärbuchten sowie im Kristallinen Grundgebirge erschließen in der Regel nicht die jeweilige hydrogeologische Einheit in ihrer Gesamtmächtigkeit. In vielen Fällen stehen die Brunnen in Wechselfolgen von höher und gering leitenden Schichten und enden meist in Geringleitern. Die Auswertung erfolgte deshalb nach den Vorgaben für vollkommene Brunnen. Um den vollständigen Zustrom zum Brunnen zu erfassen, wurde für die Grundwassermächtigkeit die gesamte Strecke des Filterkieses gewählt. Als wirksamer Brunnenradius ging der Bohrdurchmesser in die Berechnungen ein. Bei Brunnen in quartären Talgrundwasserleitern handelt es sich überwiegend um vollkommene Brunnen. Die Brunnen im Kluft-Grundwasserleiter des Grundgebirges durchteufen einzelne wasserwegsame Zonen im an sich undurchlässigen Festgestein, die zwar mit zunehmender Tiefe geringer werden aber nicht an eine klar definierte Aquiferbasis stoßen. Da hier kein eindeutig abgrenzbarer grundwassererfüllter Bereich vorliegt, kann eine Grundwassermächtigkeit nicht bestimmt werden. Für diese Fälle wurde das zwischen Ruhewasserspiegel und Ausbautiefe durchteufte Tiefenintervall der Grundwassermächtigkeit gleichgesetzt.

Um keine Mischwerte über mehrere hydrogeologische Einheiten zu erhalten, wurden Brunnen, die über mehrere Einheiten verfiltert sind, nicht berücksichtigt. Die Häufigkeitsverteilungen der k_f-Wertebereiche sind in Histogrammen und Boxplots dargestellt und zusätzlich tabellarisch erfasst (Abb. 3-2, 3-3, Tab. 3-9). Die Angaben zur Durchlässigkeit und Ergiebigkeit der einzelnen hydrogeologischen Einheiten erfolgten nach AD-Hoc-ARBEITSGRUPPE Hydrogeologie (1997).

Ergebnisse

Abbildung 3-2 zeigt die Verteilung der für die differenzierten hydrogeologischen Einheiten ermittelten k_f-Wertebereiche in Histogrammen; in Abbildung 3-3 erfolgt eine Übersichtsdarstellung als Boxplotdiagramm; Tabelle 3-9 liefert numerische statistische Angaben zu den Einheiten. Zusätzlich ist die spezifische Ergiebigkeit der hydrogeologischen Einheiten angegeben, die streng genommen nur für gespannte Grundwasserverhältnisse gilt. Bei freiem Grundwasser kann sie in Abhängigkeit von Fördermenge und Absenkung unterschiedliche Werte aufweisen und wird in diesem Fall als "Leistungs-Absenkungs-Quotient" bezeichnet. Trotz gewisser Einschränkungen liefert dieser Quotient eine brauchbare Grundlage für Vergleiche (HöLTING & COLDEWEY 2005).

Die quartären Grundwasserleiter weisen mit Medianen im Bereich von $1 \cdot 10^{-3}$ m/s die höchsten k_{f} -Werte auf, wobei die Histogramme für die mittel- und altpleistozänen Terrassen im Donautal eine deutlich mehrgipflige Verteilung mit Maxima im Bereich von 10^{-2} , 10^{-3} und 10^{-4} m/s zeigen. Vermutlich liegt diese in der im Vergleich zur würmzeitlichen Niederterrasse im Donautal heterogenen lithologischen Zusammensetzung dieser Einheit begründet. Vor allem im Übergangsbereich zur voralpinen Molasse (dem höchstgelegenen und ältesten Teil des Quartärs im Donautal) können Verwitterungs- und Umlagerungsprozesse einen Eintrag von tertiärem Feinmaterial und/oder pleistozänem Löss in die Flussschotter und -sande sowie eine damit einhergehende Verringerung der Durchlässigkeit bewirkt haben. Eine Zuordnung dieser Maxima zu einzelnen Terrassenkörpern ist allerdings nicht möglich. Bei den tertiären Grundwasserleitern zeigen die Ortenburger Schotterabfolge und Nördliche Vollschotter-Abfolge die höchsten k_{f} -Werte mit Medianen im Bereich von $1 \cdot 10^{-4}$ m/s, während die k_{f} -Werte der Einheiten mit höheren Feinkornanteilen (Glaukonitsande und Blättermergel sowie Neuhofener Schichten) mit Medianen um $1 \cdot 10^{-5}$ m/s deutlich niedriger liegen. Die geringsten k_{f} -Werte werden in den Tertiärbuchten und im Braunkohlentertiär (OSM) sowie im Grundgebirge mit Medianwerten um $5 \cdot 10^{-6}$ m/s beobachtet.

Zusätzlich zu den im Rahmen dieser Studie ausgewerteten Pumpversuchen wurden den Gutachten verschiedener Ingenieurbüros 117 Durchlässigkeitsbeiwerte entnommen. Diese waren größtenteils für Wasserversorgungsanlagen im Donautal angefertigt worden. Der Vergleich dieser Daten mit den hier ermittelten k_r-Werten ergibt eine gute Übereinstimmung der Ergebnisse.

Abb. 3-2: Verteilung der Durchlässigkeitsbeiwerte (k_f-Werte) wichtiger hydrogeologischer Einheiten der Planungsregion 12 Donau-Wald in Histogrammen.

Abb. 3-3: Vergleich der Verteilung der Durchlässigkeitsbeiwerte (k_f-Werte) wichtiger hydrogeologischer Einheiten der Planungsregion 12 Donau-Wald im Boxplot-Diagramm.

	Pumpversuc	hsdaten		Durchlässigk	keitsbeiwerte				Hydrogeologische	Bemerkung
	Anzahl Laststufen	Entnahme- mengen [//s]	Leistungs- Absenkungs- Quotienten [l/s·m]	Minimum [m/s]	10%- Quantil [m/s]	Median [m/s]	90%- Quantil [m/s]	Maximum [m/s]	Klassifikation	
Quartär des Donautals (Gesamt) (n = 307)	275*)	0,7 - 85,0*)	0,29 - 112,5*)	7,24 · 10 ⁻⁶	6,71 · 10 ⁻⁵	7,75 · 10 ^{.4}	5,76 • 10 ^{.3}	1,29 · 10 ^{·2}	Poren-Grundwasser- leiter mit mäßiger bis hoher, lokal auch sehr hoher bzw. ge- ringer Durchlässigkeit und großer Mächtigkeit sowie hoher bis sehr hoher Ergiebigkeit	
Quartär des Donautals (Holozänterrassen) (n = 144)	72*)	1,0 - 85,0*)	0,86 - 40,86*)	1,0 · 10 ⁻⁵	9,12 · 10 ⁻⁵	7,90 • 10-4	5,92 • 10 ^{.3}	1,22 · 10 ^{·2}	Poren-Grundwasser- leiter mit mittlerer bis lokal sehr hoher Durchlässigkeit und großer Mächtigkeit sowie hoher bis sehr hoher Ergiebigkeit	Kieskörper gut sortiert mit relativ geringem Sandanteil, allerdings schluffig-tonige Auffül- lungen alter Mäander- bögen und Hochflutab- lagerungen; daher relativ große Spanne bei den k _r -Werten
Quartär des Donautals (Würmzeitliche Niederterrasse) (n = 25)	; *	2,2 - 17,1*)	1,1 - 7,7*)	9,3 · 10 ⁻⁵	1,23 · 10 ^{.4}	8,27 · 10 ^{.4}	2,55 • 10 ^{.3}	4,24 • 10 ⁻³	Poren-Grundwasser- leiter mit mittlerer bis hoher Durchläs- sigkeit und großer Mächtigkeit sowie hoher bis sehr hoher Ergiebigkeit	weist aufgrund des re- lativ homogenen Schotterkörpers die ge- ringste Streuung der k _r - Werte im Donauquartär auf; Sandanteil etwas höher als in der Holo- zänterrasse, dage- gen keine feinkörnigen Rinnenfüllungen

Tab. 3-9: Statistische Angaben zu den hydraulischen Kennwerten und Kurzcharakterisierung der betrachteten hydrogeologischen Einheiten.

Bemerkung		mit zunehmendem Ab- stand zur rezenten Do- nau höherer Feinkornan- teil aufgrund von Verla- gerung schluftig-tonigen Materials aus Löss- Deckschichten und fein- körnigen Lagen der an- grenzenden Molasse; da- her relativ große Spanne bei den k _r -Werten	bei lokal höherem Anteil bindiger Horizonte auch geringe Durchlässigkeit	Werte stammen aus- schließlich von Brunnen nördlich des Vilstals	Werte beschrän- ken sich auf ein loka- les Vorkommen tertiärer Schotter S Hutthurm (kommunale WV Büchlberg)	bereichsweise sind san- dige und kiesige Partien eingeschal- tet; diese stellen Poren- Grundwasserleiter mit mäßiger bis mittlerer Durchlässigkeit dar
Hydrogeologische	Klassifikation	Poren-Grundwasser- leiter mit mäßiger bis hoher, lokal auch sehr hoher bzw. ge- ringer Durchlässig- keit und großer Mäch- tigkeit sowie hoher bis sehr hoher Ergiebig- keit	Poren-Grundwasser- leiter mit mäßiger bis mittlerer Durch- lässigkeit und gro- ßer Mächtigkeit sowie mäßiger bis mittlerer Ergiebigkeit	Poren-Grundwasser- leiter mit mäßiger bis mittlerer Durch- lässigkeit und hoher Mächtigkeit sowie hoher Ergiebigkeit	Poren-Grundwasser- leiter mit hoher Durchlässigkeit und relativ geringer Mächtigkeit; Ergie- bigkeit von lokaler bedeutung	überwiegend Grund- wassergeringleiter mit überwiegend äu- ßerst geringer bis geringer Durchläs- sigkeit
	Maximum [m/s]	1,29 . 10 ⁻²	3,42 • 10 ⁻⁴	2,13 · 10 ⁻³	3,35 • 10 ⁻⁴	9,85 • 10 ⁻⁴
	90%- Quantil [m/s]	5,57 • 10 ⁻³	2,93 · 10 ^{.4}	1,01 · 10 ⁻³	3,05 · 10 ⁻⁴	1,26 · 10 ^{.4}
	Median [m/s]	7,45 • 10 ⁻⁴	7,55 · 10 ⁻⁵	1,74 · 10 ⁻⁴	1,15 · 10 ⁻⁴	4,80 · 10 ⁻⁶
eitsbeiwerte	10%- Quantil [m/s]	4,74 • 10 ⁻⁵	1,91 • 10 ⁻⁵	4,82 · 10 ⁻⁶	9,34 • 10 ⁻⁵	2,69 · 10 ⁻⁷
Durchlässigk	Minimum [m/s]	7,24 · 10 ⁶	1,28 · 10 ⁻⁵	1,93 · 10 ⁻⁶	9,31 • 10 ^{.5}	1,70 · 10 ⁻⁷
	Leistungs- Absenkungs- Quotienten [l/s·m]	0,29 - 112,5*)	0,24 – 2,32	0,24 - 5,0*)	1,53 – 3,81	0,005 – 15,50°)
isdaten	Entnahme- mengen [l/s]	0,7 - 83,1*)	3,3 – 23,0	5 - 100*)	6,0 - 20,0	0,1 - 50,0
Pumpversuch	Anzahl Laststufen	192*)	9	52*)	12	125*)
		Quartär des Donautals (Mittel- und altpleistozä- ne Terrassen) (n = 137)	Nördliche Vollschotter- Abfolge (n = 10)	Ortenburger Schotterabfolge (n = 24)	Intrakristallines Tertiär (n = 4)	Braunkohlentertiär (OSM) (n = 57)

Grundwasserführung ist gebunden an unregel- mäßig auftretende san- dige Bereiche unter- schiedlicher Mächtigkeit	mäßige bis mittlere Porendurchlässigkeit weisen in erster Linie die überwiegend an der Basis sowie in unter- schiedlichen Hönenla- gen und Mächtigkeiten auftreanden Sandlagen auft, aus diesem Be- reich sind die höheren Entnahmerengen und Leistungs-Absenkungs- Quotienten dokumentiert	sämtliche Brunnen in dieser Auflistung sind im anstehenden Fest- gestein verfiltert; in Bereichen mächtigerer umgelagenter Zersatz- durchlässigkeit möglich; autochthoner Zersatz ist i.d.R. vorwiegend als Kluft-Grundwasserleiter anzusprechen	jelten die o.a.
Wechselfolge von Poren-Grundwasser- leitern mit geringer, bei höheren Sand- anteilen mäßiger Durchlässigkeit und großer Mächtigkeit sowie weitgehend ge- ringer Ergiebigkeit	Grundwassergering- leiter oder Poren- Grundwasserleiter mit überwiegend ge- ringer, bei höheren Sandanteilen mäßiger Durchlässigkeit und großer Mächtigkeit sowie weitgehend ge- ringer Ergiebigkeit	Kluft-Grundwasser- leiter/ Grundwasser- geringleiter mit sehr geringer bis mittle- rer Durchlässigkeit, dessen Ergiebigkeit aufgrund der stark schwankenden Klüf- tigkeit der an sich nicht primär porösen Gesteine auch klein- räumig erheblich va- riiert	ionen beinhalten. Daher g
5,54 • 10 ⁻⁴	9,97 • 10 ⁻⁴	1,21 • 10 ⁻⁴	alle Informati
6,71 • 10 ⁻⁵	4,79 · 10 ⁻⁵	5,78 • 10 ⁻⁵	die z.T. nicht
1,51 · 10 ^{·5}	6,78 · 10 ⁻⁶	5,84 • 10 ⁻⁶	s entnommen,
9,17 · 10 ^{.7}	3,86 • 10 ⁷	9,08 · 10 ⁻⁷	ngenieurbüros ertigt wurden.
2,32 · 10 ⁻⁷	2,42 • 10 ⁻⁷	1,24 · 10 ⁻⁷	erschiedener I suchung angei
0,008 – 3,03	0,006 – 5,38	0,007 – 1,14	vurde Gutachten vo
0,3 – 21,0	0,2 - 52,0	0,1 - 9,0	igkeitsbeiwerten w ungen, die im Rah
б. 8	8 O	76	on Durchlässi uchs-Auswerti
Glaukonitsande und Blättermergel (n = 53)	Neuhofener Schichten (n = 39)	Kristallines Grundgebirge (n = 46)	*) Eine größere Anzahl v Daten nur für Pumpversu

3.3 Lineamentanalyse

Methodik

Die Kartierung topografischer Lineamente erfolgte auf der Grundlage eines Digitalen Geländemodells (DGM) aus Daten der NASA Shuttle RADAR Topography Mission (SRTM) mit einer horizontalen Auflösung von 90 m und einer nominalen vertikalen Auflösung von 1 m für das gesamte ostbayerische Grundgebirge. Die in mehreren Durchgängen in verschiedenen Maßstäben kartierten Lineamente wurden zunächst nach Länge gefiltert. Dabei wurden solche mit Längen unter 1500 m als nicht relevant verworfen. Im Anschluss wurden die verbleibenden Strukturen anhand von digitalen topografischen Karten auf ihre Schlüssigkeit hin überprüft, um anthropogene Einflüsse auszuschließen.

Daraufhin wurde der so entstandene Datensatz nach Vorzugsrichtungen gefiltert, wodurch die im Untersuchungsgebiet dominanten Lineamentscharen identifiziert werden konnten. So wurden im Originaldatensatz vier Hauptrichtungen isoliert. Um diese Maxima wurden Filtersegmente gewählt und die darin liegenden Lineamente zur Weiterverarbeitung verwendet. Tabelle 3-10 zeigt die Parameter dieser Filterung. Aus diesen Datensätzen wurden schließlich Lineamentkarten, Lineamentdichtekarten sowie Rosendiagramme der Streichrichtungen angefertigt.

Origina	Idatensatz		Gefilterter Datens	atz	
Rang	Maximum (Streichrichtung, N = 0°)	% der Gesamt- verteilung	Segmentgröße um Maximum	Gefilterter	Bereich
1	135°	9,8	±10°	125–145°	(W)NW–(E)SE
2	5°	8,1	±10°	355–15°	N–S
3	45°	6,4	±10°	35–55°	NE-SE
4	75°	5,4	±10°	65–85°	ENE-WSW

Tab. 3-10: Verteilung der Richtungsmaxima (vgl. Abb. 3-6) und deren Anteil am Gesamtdatensatz sowie Filterparameter. Die Werte des gefilterten Bereichs zeigen die für die weitere Analyse verwendeten Richtungssegmente.

Für die Dichtekarten wurde die kumulative Länge der kartierten Lineamente in einem vorgegebenen Suchradius (hierfür wurden 4500 m gewählt) berechnet und in einem 90 m-Raster als Länge pro Fläche (in diesem Fall Meter pro km²) dargestellt. Dies wurde sowohl für den Gesamtdatensatz als auch für die individuellen Vorzugsrichtungen durchgeführt. Die daraus resultierenden Raster wurden miteinander verrechnet, so dass als Endprodukt eine Karte erstellt werden konnte, auf der die räumliche Verteilung der prozentualen Anteile einer Lineamentrichtung am Gesamtdatensatz dargestellt ist (Abb. 3-5). Das in Abbildung 3-6 dargestellte Rosendiagramm zeigt in 10°-Segmenten die Streichrichtungen der Einzellineamente gewichtet nach ihrer Länge.

Klüftung

Aufgrund der hydraulisch kaum wirksamen primären Porosität der Gesteine des Grundgebirges, denen FREEZE & CHERRY (1979) Durchlässigkeitsbeiwerte im Bereich von 10^{-10} bis 10^{-13} m/s zuordnen, wird die Grundwasserführung des Grundgebirges fast ausschließlich von dessen Klüftung bestimmt. Die oben genannten Autoren messen geklüfteten Kristallingesteinen je nach Dichte des Trennflächengefüges k_r-Werte von 10^{-4} bis 10^{-8} m/s bei.

Regionale Kluftmuster bestimmen in mehrfacher Hinsicht die hydrogeologischen Eigenschaften des Untersuchungsraums. So folgen geomorphologische Einheiten wie Täler oder Höhenrücken im Allgemeinen den Vorzugsrichtungen von Trennflächenscharen, da in diesen Richtungen erosive Prozesse verstärkt wirksam werden können. Dies hat sowohl Auswirkungen auf das oberflächennahe Drainagesystem als auch auf die Richtung und Größe von hydraulischen Gradienten im Aquifer. Im tieferen Untergrund erzeugen Kluftsysteme mit ihren verschiedenen Ausprägungen Fließwege mit bestimmten hydraulischen Eigenschaften. Untersuchungen des Trennfugengefüges neueren Datums im Passauer Wald und der Arberregion (GALADÍ-ENRÍQUEZ 2006, ZEITLHÖFLER 2007) ergeben ein relativ einheitliches Bild, das im Hinblick auf Kluftrichtungen nur geringe gesteinsbezogene Unterschiede aufweist. Der Großteil der Bruchflächen fällt steil bis saiger ein und streicht auf regionaler Ebene vorwiegend in den Richtungen (W)NW-(E)SE, und N-S bis NNE-SSW (Abb. 3-4). Zudem sind horizontale bis flach geneigte Trennflächen zu beobachten, die v.a. in granitischen Lithologien infolge regionaler Hebung und damit einhergehender Druckentlastung entstanden sind. Auf lokaler Ebene hängt die relative Häufigkeit einzelner Kluftscharen stark von deren Nähe zu regionalen Großstrukturen, wie beispielsweise der Pfahlzone oder dem Donaurandbruch, sowie der Präsenz metamorpher Gefüge ab. Da viele dieser Strukturen und Gefüge im Untersuchungsraum (W)NW-(E)SE verlaufen, streicht auch die regional dominante Trennflächenschar in dieser Richtung.

Lineamente

Die Auswertung des SRTM-Geländemodells im Hinblick auf topografische Lineamente ergab mehrere Vorzugsrichtungen, die im Allgemeinen mit den regionalen Hauptkluftrichtungen gut übereinstimmen. Die jeweils lokal dominanten Lineamentrichtungen hängen stark von ihrer Nähe zu regionalen Großstrukturen sowie von der Orientierung metamorpher Gefüge ab, da diese vielfach sprödtektonisch reaktiviert wurden und sich regionale foliationsparallele Störungen ausbildeten. Daher etablierte sich lokal meist eine dominante Lineamentrichtung, deren relative Häufigkeit in Abbildung 3-5 dargestellt ist. Im Untersuchungsraum liegen die Maxima der Lineamentrichtungen – in absteigender Häufigkeit – bei 130–140°, 0–10°, 40–50° und 70–80° (Abb. 3-6).

Der Vergleich von Lineamenten und Kluftscharen auf lokaler Ebene zeigt, dass in den meisten Fällen eine im Aufschluss eingemessene Hauptkluftrichtung subparallel zu einem Lineament in der näheren Umgebung verläuft (ZEITLHÖFLER 2007). Zudem konnte in einer Fallstudie ein Zusammenhang zwischen Lineamenten, Kluftscharen und Grundwasserfluss mit Hilfe von Fluoreszenztracertests im Quellgebiet Neusohl bei Regen hergestellt werden (RAUM 2002, ZEITLHÖFLER & RAUM 2005).

Gangscharen

Zusätzlich zu Kluft- und Lineamentscharen wurden im Untersuchungsgebiet auch die Streichrichtungen magmatischer und hydrothermaler Gänge betrachtet. Wie Abbildung 3-7 zeigt, folgen diese im Allgemeinen den regional dominanten Lineament- und Kluftrichtungen. Die große Mehrzahl dieser Strukturen streicht in der variszischen NW–SE-Richtung und somit subparallel zum metamorphen Gefüge. In sehr geringem Maße existiert auch eine NE–SW-Richtung. Die Gänge reagieren aufgrund lithologischer Kompetenzunterschiede und ihrer relativ geringen Mächtigkeiten – ähnlich wie geringmächtige Lagen in Sedimentgesteinen – anders als das Nebengestein auf tektonische Spannungen (KARRENBERG 1981, EISBACHER 1991). Dies hat zur Folge, dass sich sowohl im Kontakt- als auch im Kernbereich dieser Intrusionen die Klüftigkeit und damit auch die hydraulische Leitfähigkeit signifikant ändern können und diese Gänge somit zu bevorzugten Transportwegen werden.

Geologische Strukturen und hydraulische Kennwerte

Zwischen den tektonischen und hydraulischen Gegebenheiten im Kristallinen Grundgebirge der Planungsregion 12 Donau-Wald kann anhand der ermittelten Durchlässigkeitsbeiwerte und der Lineamentauswertung ein Zusammenhang hergestellt werden. An dieser Stelle muss jedoch einschränkend bemerkt werden, dass die hier aufgeführten hydraulischen Kennwerte allenfalls Näherungscharakter besitzen, da die zugrunde liegende Berechnungsmethode ursprünglich für Poren-Grundwasserleiter entwickelt wurde, die zudem eng gesteckte Randbedingungen zu erfüllen haben.

Im Grundgebirgsbereich wurden für 40 Tiefbrunnen mit Ausbautiefen zwischen 13 und 98 m hydraulische Kennwerte aus Pumpversuchen errechnet und die Raumlage dieser Brunnen im Hinblick auf deren Nähe zu topografischen Lineamenten untersucht. Die Analyse ergab, dass bei Brunnen in einem Umkreis von weniger als 200 m von kartierten Lineamenten im Durchschnitt signifikant höhere Ergiebigkeiten zu erwarten sind als bei solchen, die sich weiter entfernt davon befinden. Im regionalen arithmetischen Mittel liegen die Leistungs-Absenkungs-Quotienten von Brunnen im 200 m-Umkreis von Lineamenten bei 0,32 l/(s ·m), während solche jenseits der 200 m-Zone durchschnittlich 0,18 l/(s ·m) erbringen. Bezogen auf Einzelwerte zeigt Abbildung 3-8 ebenfalls die Abhängigkeit zwischen der Ergiebigkeit eines Brunnens und seinem Abstand zum nächstgelegenen Lineament.

Anhand von Flowmetermessungen in 8 Brunnen mit Ausbautiefen zwischen 39 und 64 m wurde festgestellt, dass über 80% der Wasserzutritte im Tiefenintervall zwischen 10 und 35 m unter GOK auftreten (Datenzusammenstellung in ZEITLHÖFLER 2007). In diesem Bereich liegt im Grundgebirge die Zersatz- bzw. Auflockerungszone (gemäß RAUM 2002), in der Verwitterungsvorgänge und gravitative Prozesse den Gesteinsverband zusätzlich zerrütten und bestehende Kluftsysteme aufweiten. Einschränkend ist allerdings zu bemerken, dass laut RAUM (2002) autochthoner Grundgebirgszersatz in der Regel keine höheren Porositäten im Vergleich zum unverwitterten Gestein aufweist und nicht als reiner Poren-Grundwasserleiter anzusehen ist. Markierungsversuche des genannten Autors zeigten deutlich, dass auch im vollkommen verwitterten oberflächennahen Bereich reliktische Kluftsysteme den Hauptanteil an der Grundwasserführung haben. Lediglich sandig verwittertem Granitgrus oder umgelagertem Zersatz werden Eigenschaften eines Poren-Grundwasserleiters zugeschrieben.

Abb. 3-4: Streichrichtungen steil stehender Klüfte (> 50°) im nördlichen Landkreis Regen und im Passauer Wald (n = 5187).

Abb. 3-5: Karte der relativen Lineamentdichten im Grundgebirge bezogen auf die Richtung der vorherrschenden Lineamente.

Abb. 3-6: Lineamentrichtungen im Kristallinanteil der Planungsregion 12 Donau-Wald.

Abb. 3-7: Streichrichtungen magmatischer und hydrothermaler Gänge im Kristallinanteil der Planungsregion 12 Donau-Wald.

Abb. 3-8: Verhältnis von Leistungs-Absenkungs-Quotienten zu Abständen zum nächstgelegenen topografischen Lineament. Während niedrige Ergiebigkeiten bei Brunnen jeden Abstands vorkommen können, konzentrieren sich höhere Schüttungen im Nahbereich der Lineamente.

3.4 Schichtgrenzen

Für die Basis der quartären Talfüllungen von Donau und Vils, die Basis und Deckfläche der tertiären Ortenburger Schotterabfolge und die Grundgebirgs-Deckfläche der Hengersberger Bucht wurden Isolinien der Grenzflächen konstruiert. Ein Großteil der im Bodeninformationssystem Bayern (BIS-BY) verfügbaren Bohrprofile wurde lithologisch und stratigraphisch überprüft und zugeordnet, so dass insgesamt mehr als 4800 Schichtansprachen in der Auswertung verwendet werden konnten. In Gebieten unsicherer Datenlage wurden manuell Hilfspunkte gesetzt. An den quartären Verbreitungsgrenzen wurden mit Hilfe des Digitalen Geländemodells DGM 25 (BAYERISCHES LANDESAMT FÜR VERMESSUNG UND GEOINFORMATION 1985-1990) mit einer Gitterweite von 50 m und vorliegenden Schichtmächtigkeiten zusätzliche Hilfspunkte erzeugt.

Die Konstruktion der Isolinienpläne erfolgte rechnergestützt mit dem Softwarepaket Surfer[®] 8 der Fa. GOLDEN SOFTWARE (2002). Für die Entscheidung, welche Regionalisierungsmethode im Einzelfall zu wählen ist, wurden auf einen Datensatz verschiedene Algorithmen (Kriging mit Variogramm-Analyse, Radial Basis Function, Minimum Curvature, Triangulation) mit variierenden Parametern angewendet und anschließend eine Kreuzvalidierung durchgeführt. Diese ist ein Maß für die Zuverlässigkeit des Modells: je Rechendurchgang wird ein Datenpunkt aus dem Datensatz genommen und anschließend der an seiner Stelle errechnete Wert auf Abweichung vom wahren Messwert kontrolliert. Es wurde dann diejenige Methode ausgewählt, die der Datenqualität und -dichte am meisten gerecht wurde (z. B. keine Anwendung hochwertiger Verfahren auf geringwertige Datensätze) und die die kleinsten Abweichungen in der Kreuzvalidierung zeigte. Die Regionalisierungsmethoden sind Tabelle 3-11 zu entnehmen.

Tab. 3-11: Übersicht der für die Flächenmodellierung verwendeten Methoden, Parameter und Punkte mit gesicherter stratigraphischer Ansprache, jeweils für den Anteil der Planungsregion 12 Donau-Wald. Relativ große Anteile der Hilfspunkte am Gesamtdatensatz sind auf die Konstruktion von Hilfsprofilen und auf Stützpunkte entlang von Ausbissgrenzen zurückzuführen.

Einheit	Punktezahl	davon Hilfspunkte	Methode	Parameter
Quartärbasis Donautal mit Isarmündung	2862	86	Universal Kriging	quadratischer Trend, exponentielles Modell, Reichweite = 3000 m, Sill = 26, Nugget-Effekt = 1, Anisotropie: 160°, Faktor 3, Declustering mit Median Z, Suchradius 400 m
Quartärbasis Vilstal	108	24	Radial Basis Function	R² = 150, Anisotropie im Ostteil: 90°, Faktor 3
Deckfläche Ortenburger Schotterabfolge,	257	63	Radial Basis Function	R ² -Wert = 10.000, keine Anisotropie Declustering mit Median Z, Suchradius 250 m
Basis Ortenburger Schotterabfolge	343	175		
Deckfläche Grundgebirge Hengersberger Bucht	257	98	Minimum Curvature	keine Anisotropie, Filter 250 m

Die in Abb. 3-9 dargestellte Basis der quartären Füllung des Donautals weist in ihrer Oberfläche deutliche Höhenunterschiede auf und zeigt lokal flachwellige Rinnen- und Rückenstrukturen, was zu Mächtigkeitsunterschieden der Quartärkiese über kurze Distanz führt. Die höchsten Erhebungen sind am SW-Rand mit 330 bis 360 m NN zu beobachten, die geringsten Tiefen mit 295 bis 300 m NN im Südosten in Flussnähe.

Abb. 3-9: Verbreitung und Isohypsen der Basisfläche der quartären Kiese im Donautal (einschl. Stützpunkte).

Die Basisfläche der quartären Füllung des Vilstals beträgt im äußersten NW 345 m NN und fällt Richtung SE auf 310 m NN ab (Abb. 3-10). Generell ist ein relativ ruhiges Relief mit einem Einfallen zur Vils hin zu beobachten.

Abb. 3-10: Verbreitung und Isohypsen der Basisfläche der quartären Kiese im Vilstal (einschl. Stützpunkte).

Abb. 3-11: Verbreitung und Isohypsen der Basisfläche der Ortenburger Schotterabfolge südlich der Vils (einschl. Stützpunkte).

Die Basis der Ortenburger Schotterabfolge liegt im äußersten Südosten bei 400 bis 405 m NN (Abb. 3-11). Nach N und NW fällt sie bis zum Vilstal auf 310 bis 335 m NN ab und wird vom Vilstal wie auch von den Tälern der Wolfach und des Aunkirchener Bachs durchschnitten. Nördlich des Vilstals ist die Ortenburger Schotterabfolge auf gleicher Höhe nochmals aufgeschlossen und taucht dann unter den Forstharter Rücken ab. Unter diesem Tertiärrücken kann die Schotterbasis mit 270 bis 300 m NN angegeben werden (Abb. 3-12). Die Schottermächtigkeit erreicht hier mit bis zu 50 m ihre größten Werte. Nach NW fällt die Basis kontinuierlich weiter ab (bei Plattling ca. 205 m NN), bis sie bei Straubing eine Höhenlage von 165 bis 175 m NN erreicht (Abb. 3-12).

Abb. 3-12: Verbreitung und Isohypsen der Basisfläche der Ortenburger Schotterabfolge zwischen Straubing und Vilshofen (einschl. Stützpunkte).

Die Deckfläche der Ortenburger Schotterabfolge liegt in Kiesgruben nördlich der Vils bei 325 bis 355 m NN (Abb. 3-13), darüber folgen konkordant die Feinsedimente der Limnischen Süßwasserschichten. Nach NW fällt die Deckfläche der Ortenburger Schotterabfolge analog zur Basisfläche weiter ab, wobei mittlere Kiesmächtigkeiten zwischen 20 und 30 m zu beobachten sind. Bei Straubing erreicht sie eine Höhenlage von 185 bis 195 m NN (Abb. 3-13). Nördlich und nordwestlich des dargestellten Verbreitungsraums konnte die Ortenburger Schotterabfolge in Bohrungen nicht mehr nachgewiesen werden. Es bleibt zu klären, ob der Schotterkörper seine Fortsetzung im Südwesten Richtung Geiselhöring findet, oder ob er erosiv oder tektonisch begrenzt endet.

Abb. 3-13: Verbreitung und Isohypsen der Deckfläche der Ortenburger Schotterabfolge zwischen Straubing und Vilshofen (einschl. Stützpunkte).

Die Hengersberger Bucht wurde bereits mehrfach durch seismische Profile und zahlreiche Bohrungen erkundet, vornehmlich für die Lagerstättenprospektion (Braunkohle). Anhand dieser Daten und vorhandener Bohrungen wurde die Deckfläche des Kristallinen Grundgebirges als Basis der tertiären Füllung der Hengersberger Bucht konstruiert (Abb. 3-14). Diese zeigt ein recht uneinheitliches Relief, das vor allem in der westlichen Hälfte viele Kristallinhochlagen aufweist. Generell scheint die Bucht in Mündungsnähe zwei Rinnenachsen aufzuweisen, die analog zu den anderen Buchten übertiefte Kristallin-Deckflächen mit NN-Höhen um 250 m zeigen. Ob hier eine kleinräumige Tektonik das uneinheitliche Relief und damit auch schwankende Mächtigkeiten der Rinnenfüllung schafft, ist nicht bekannt.

Abb. 3-14: Isohypsen der Grundgebirgs-Deckfläche im Verbreitungsgebiet der Hengersberger Bucht (einschl. Stützpunkte).

4 Grundwasserbeschaffenheit

Die physikalischen und chemischen Eigenschaften des Grundwassers werden durch Klima- und andere Umweltfaktoren, Veränderungen des Sickerwassers bei der Passage durch die ungesättigte Zone, die mineralogische Zusammensetzung des Kontaktgesteins, die Zusammensetzung der mit dem Grundwasser in Kontakt stehenden Gase, die Druck- und Temperaturverhältnisse und die Verweildauer des Wassers im Untergrund beeinflusst. Neben der Zusammensetzung des Bodenwassers (Sickerwasser) und der Oberflächenwässer spielen im Grundwasserkörper Komplexbildungs- und Zerfallsprozesse, Säure-Base-Reaktionen, Oxidations-Reduktions-Reaktionen, Lösungs-Fällungsreaktionen, Adsorptions-Desorptions-Reaktionen sowie mikrobielle Akkumulations- und Abbauprozesse eine bedeutende Rolle (DVWK 1999, AD-Hoc-ARBEITSGRUPPE HYDROGEOLOGIE 1997).

4.1 Datengrundlagen

Ziel der Grundwasserbeprobungen ist, auf Grundlage eines repräsentativen Datensatzes einen Überblick über den geogen geprägten hydrochemischen Charakter der jeweiligen hydrogeochemischen Einheiten zu geben. Datengrundlagen sind daher umfassende Beprobungen von Rohwässern aus in der Regel gut überwachten und dokumentierten Grundwasserfassungen öffentlicher oder privater Trinkwasser- und Brauchwasserversorgungsanlagen, Grundwassermessstellen sowie aus natürlichen Quellen durch das Bayerische Landesamt für Umwelt (LfU).

Probennahmestellen mit bekannter oder erwarteter stärkerer anthropogener Belastung des Grundwassers z. B. in der Nähe von Deponien oder Altstandorten wurden grundsätzlich nicht beprobt. Entsprechende vorliegende Probenergebnisse wurden nicht berücksichtigt. Diffuse, ubiquitäre Einträge durch Landwirtschaft (Düngung), Verkehr (Salzstreuung) und aus der Luft waren jedoch kein Ausschlusskriterium, da sie die in vielen oberflächennahen Grundwasserleitern vorhandene Hintergrundbelastung der Grundwässer widerspiegeln.

In der Planungsregion 12 Donau-Wald und dem näheren Umgriff wurden im Zeitraum 1982 bis April 2007 im Rahmen folgender Projekte an 1127 Probennahmestellen insgesamt 1525 Wasserproben (492 aus Brunnen, 1033 aus Quellen) genommen:

- Beprobungen f
 ür Hydrogeologische Fachbeitr
 äge zu den Erl
 äuterungen der Geologischen Karten 1 : 25 000 sowie der allgemeinen hydrogeologischen Landesaufnahme (1982–2001)
- Beprobungen im Zuge des Forschungs- und Entwicklungsvorhabens "Hydrogeochemische Hintergrundwerte der Grundwässer Bayerns" (2001–2002)
- Verdichtung des Probennahmenetzes im Rahmen des EU-Projektes
 "Schaffung geologischer und hydrogeologischer Informationsgrundlagen" (2003–2007)

Die Analytik der Grundwasserproben erfolgte ausschließlich im Labor des LfU. Anhang 2 zeigt die routinemäßig analysierten Parameter mit Analysemethoden, Nachweis- und Bestimmungsgrenzen sowie Teilprobenkonditionierung. Eine eingehende Beschreibung der am LfU verwendeten Probennahmeverfahren und Analysemethoden findet sich in WAGNER et al. (2003).

Da die Nachweis- und Bestimmungsgrenzen der Einzelparameter zeitlich variieren bzw. im Verlauf des langen Beprobungszeitraums in der Regel mit verbesserter Technik sanken, wurden für die statistische Auswertung einheitliche, generell eher konservativ-höhere Werte für die Einzelparameter verwendet. Im unteren Konzentrationsbereich werden daher gewisse Unschärfen der ermittelten Minima und Quantilwerte in Kauf genommen. Die Analysenergebnisse sind im Bodeninformationssystem Bayern (BIS-BY) gespeichert.

Datenaufbereitung

In einem ersten Schritt wurden alle Grundwasserproben nach Auswertung der vorliegenden Kartenunterlagen, Schichtenverzeichnisse, stratigraphischen Einstufungen und Ausbaupläne den hydrogeologischen Einheiten zugeordnet.

Mischwässer wie Proben aus Brunnen, die in mehreren hydrogeologischen Einheiten verfiltert sind, wurden für die Auswertung nicht verwendet. Eine Ausnahme bilden die in Brunnen in der Planungsregion 12 Donau-Wald zusammen verfilterten Grundwässer der Kreide- und Tertiärsedimente sowie die Dogger/Malm-Mischwässer.

Entsprechend der Charakteristik der hydrochemischen Eigenschaften werden im Rahmen der differenzierten hydrogeologischen Einheiten hydrogeochemische Einheiten gebildet, die dann statistisch untersucht und beschrieben werden. Dies kann durch eine Zusammenfassung, aber auch durch eine Abgrenzung innerhalb von hydrogeologischen Einheiten erfolgen. Insgesamt werden in der Planungsregion 12 Donau-Wald 23 hydrogeochemische Einheiten differenziert, von denen in Kap. 4.2 zwölf Einheiten (Tab. 4.1, Lage siehe Abb. 4-1 und 4-2) näher beschrieben werden. Die restlichen elf hydrogeochemischen Einheiten (Tab. 4.2) im Grenzbereich zur Planungsregion 13 Landshut sind in dem entsprechenden Erläuterungsband (KAINZMAIER et al. 2007) aufgeführt.

Hydrogeochemische Einheit	Anz	ahl der Prob	en	Brunnentiefe	Zeitraum der
Mit Hauptverbreitung in der Planungsregion 12 Donau- Wald	Gesamt	Quellen	Brunnen	լՠյ	Probennanme
Quartär des Donautals	132	7	125	3–29	1982,1990, 2002, 2004–2006
Schotter und Sande des intra- kristallinen Tertiärs	8	6	2	30–31,3	2004–2006
Sedimente der Tertiärbuchten und Braunkohlentertiär (OSM)	24	12	12	4,5–124,5	2001, 2004–2006
Ortenburger Schotterabfolge	25	2	23	6–175,5	2000, 2002–2003, 2004–2006
Kreide/Tertiär-Mischwässer	8	-	8	71,4–320	2003–2006
Dogger/Malm-Mischwässer	7	-	7	20,5–112	2004–2006
Malm-Thermalwässer	6	1	5	824,8–1522,4	1990, 2004, 2005
Saure bis intermediäre Plutonite	231	221	10	9–87	1990, 2001, 2004–2006
Saure bis intermediäre Metamorphite	381	362	19	6–65	2000, 2001, 2004–2006
Ultrametamorphite	112	95	17	7,1–100	2000, 2001, 2004–2006
Tektonite/Ganggesteine	18	18	0	-	2000, 2004–2005
Oberflächennahes Kristallin	42	42	0	-	2000, 2004–2006

Tab. 4-1: Hydrogeochemische Einheiten mit Hauptverbreitungsgebiet in der Planungsregion 12 Donau-Wald, Anzahl der Grundwasserproben sowie Probennahmezeiträume. Tab. 4-2: Hydrogeochemische Einheiten mit Hauptverbreitungsgebiet in der Planungsregion 13 Landshut und nur untergeordneten Anteilen in der Planungsregion 12 Donau-Wald, Anzahl der Grundwasserproben und Probennahmezeiträume.

Hydrogeochemische Einheit mit		Anzahl o	der Proben	Brunnentiefe	Zeitraum der
Planungsregion 13 Landshut	Gesamt	Quellen	Brunnen	(11)	Fiobermannie
Quartär des Inntals	17	1	16	5–22	2001, 2005–2006
Quartär des Vilstals	10	-	10	3–8	2005
OSM Hangendstockwerke	14	9	5	7–101	2003–2005
OSM Hauptstockwerk	11	-	11	8–95	2000, 2003–2004
OSM Quarzrestschotter	3	2	1	2	2003–2004
OBSM Hangendstockwerke	8	7	1	15	1990, 2003–2006
OBSM Hauptstockwerk	1	-	1	119	2000
OMM Hangendstockwerke	2	2	-	-	2004
OMM Hauptstockwerk	44	-	44	15–115	2003–2005
OMM Austauschwässer Ca/Na > 0,2	5	-	5	12–90	2003–2005
OMM Austauschwässer Ca/Na < 0,2	18	-	18	27–213,5	2001, 2003–2005

Die weitergehende Aufbereitung der hydrochemischen Grundwasserdaten erfolgte in mehreren Schritten mit dem Ziel, eine repräsentative Datenbasis für die Auswertung zu erhalten:

- Verwendung von Proben ab dem Jahr 1982, um vergleichbare Analysemethoden und damit Analysenergebnisse zu erhalten. Alle älteren Proben blieben unberücksichtigt.
- Berücksichtigung von jeweils nur einer Wasserprobe pro Probennahmestelle in der Regel jeweils der jüngsten – um eine gleiche Gewichtung in der statistischen Auswertung zu gewährleisten
- Ausschluss von Grundwasserproben mit unvollständigen Analysendatensätzen (z. B. fehlende Haupt-, Neben- oder Spurenelemente) oder mit einem Ionenbilanzfehler > 10% bei normal mineralisierten bzw. mit einem Ionenbilanzfehler > 0,1 mmol/l bei gering mineralisierten Grundwässern
- Bewertung von Ausreißern und Ausschluss von Grundwasserproben mit im Vergleich zur Gesamtprobenmenge anomalen Werten bei einem oder mehreren Parametern oder nachweisbaren höheren anthropogenen Belastungen

Nach Abzug dieser Mehrfachbeprobungen bzw. anthropogen beeinflussten oder unplausiblen Proben (rund 250) lag eine Datenbasis von insgesamt 1275 Wasserproben für die Beschreibung der hydrogeochemischen Eigenschaften vor.

Datenauswertung

Im Kapitel 4.2 erfolgt die Auswertung und zusammenfassende Beschreibung von wichtigen chemischen und physikalischen Parametern der untersuchten Grundwässer in hydrogeochemischen Einheiten mit Hauptverbreitungsgebiet in der Planungsregion 12 Donau-Wald und – soweit möglich – Hinweisen auf die Genese der Wässer. Diese enthält folgende Themen und Diagramme:

- Textliche Kurzcharakterisierung der Grundwässer mit Klassifikation nach Furtak & Langguth (1967) sowie Angaben zum Mineralgehalt, pH-Wert und der Gesamthärte nach dem Wasch- und Reinigungsmittelgesetz (WRMG 2007)
- Tabellarische Zusammenstellung der wichtigsten Inhaltsstoffe mit Medianwerten über 5 mg/l, im Intervall zwischen < 5 mg/l und > 1 mg/l sowie für die Spurenstoffe mit Medianwerten > 100 µg/l,
 > 10 µg/l und > 1 µg/l. Dargestellt werden der Medianwert und in Klammern das 10%-Quantil und 90%-Quantil bzw. bei weniger als 10 Wasserproben der Minimal- und Maximalwert.
- Allgemeine Einschätzung von wesentlichen Parametern zur Beschreibung des Kalk-Kohlensäure-Gleichgewichts und der Verockerungsneigung. Die Bewertung der Betonaggressivität nach DIN 4030 erfolgte nur für die Parameter pH-Wert, Magnesium und Sulfat.
- Hinweise zu Grundwasserleiter-spezifischen geogen begründeten hydrochemischen Besonderheiten (z. B. Arsen, Radon), deutlichen anthropogenen Beeinflussungen oder Überschreitungen von Grenzwerten nach TRINKWV (2001)
- Darstellung der äquivalent-prozentualen Zusammensetzung nach Furtak & Langguth (1967) in Anionen- und Kationendreiecken und einer Vierstoffraute (Piperdiagramm)
- Darstellung der Medianwerte der mmol-Äqivalent-Konzentrationen (meq) der Wasserhauptinhaltstoffe (Stiff-Diagramm)

Anhang 3 enthält die Tabellen mit den statistischen Maßzahlen der Beschaffenheitsparameter der differenzierten hydrogeochemischen Einheiten (physikochemische Parameter, Anzahl der Probennahmestellen und Proben, Anzahl der gemessenen Werte kleiner Nachweisgrenze, Minimum, 10%- und 25%-Quantil, Median, 75%- und 90%-Quantil und Maximum).

Anhang 4 zeigt für jeden Beschaffenheitsparameter mit Spannweitendiagrammen (Boxplots) eine grafische Übersicht der charakteristischen Verteilung der Werte innerhalb der unterschiedenen hydrogeochemischen Einheiten. Dargestellt werden die oben genannten statistischen Maßzahlen.

Abb. 4-1: Lage der Probennahmestellen außerhalb des Kristallinen Grundgebirges mit Hauptverbreitungsgebiet in der Planungsregion 12 Donau-Wald, differenziert nach hydrogeochemischen Einheiten.

Abb. 4-2: Lage der Probennahmestellen im Bereich des Kristallinen Grundgebirges mit Hauptverbreitungsgebiet in der Planungsregion 12 Donau-Wald, differenziert nach hydrogeochemischen Einheiten.

4.2 Charakterisierung der hydrogeochemischen Einheiten

Quartär des Donautals

Die quartäre Füllung des Donautals wird aus sandigen Kiesen mit hohem Karbonatanteil aufgebaut. Die Mächtigkeiten betragen bis etwa 15 m. Die Einheit stellt einen regional bis überregional bedeutenden Poren-Grundwasserleiter mit überwiegend mäßigen bis hohen Durchlässigkeiten und Ergiebigkeiten dar.

Bei den Grundwässern des Quartärs im Donautal handelt es sich um Calcium-Magnesium-Hydrogenkarbonatwässer mit einem mittleren Mineralstoffgehalt und erhöhten Gehalten an Natrium, Chlorid, Sulfat und Nitrat (vorwiegend "normal erdalkalische, überwiegend hydrogenkarbonatische Grundwässer" nach FURTAK & LANGGUTH, 1967). Die Rohwasserproben liegen im neutralen pH-Wert-Bereich. Nach ihrem Gehalt an Erdalkalien werden sie gemäß WRMG (2007) überwiegend in den Härtebereich "hart" eingestuft.

Das Grundwasser steht nicht vollständig im Kalk-Kohlensäure-Gleichgewicht, sondern verhält sich schwach kalkaggressiv (negativer Calciumkarbonat-Sättigungsindex). Die Parameter pH-Wert, Magnesium und Sulfat geben keinen Hinweis auf Betonaggressivität nach DIN 4030.

Die Grundwasserproben sind bezüglich des Sauerstoffgehalts vorwiegend teilgesättigt bis sauerstofffrei. Die Werte an gelöstem Eisen und Mangan liegen bei etwa einem Viertel der Analysen deutlich über den jeweiligen Grenzwerten der TRINKWV (2001), so dass insbesondere bei unsachgemäßem Ausbau oder Betrieb die Gefahr der vorzeitigen Brunnenverockerung gegeben ist.

Der relativ hohe Gehalt an Kohlensäure und die reduzierenden Verhältnisse werden vermutlich durch den Abbau von im Grundwasserleiter verteilter organischer Substanz oder die Bodenauflage verursacht. Im Vergleich zu den anderen Grundwässern der Planungsregion 12 Donau-Wald ist in den karbonatischen Lockergesteinen im Quartär des Donautals eine relativ hohe Gesamtmineralisation des oberflächennahen Grundwassers zu beobachten.

Überschreitungen der Grenzwerte der TRINKWV (2001) treten aufgrund anthropogener Einflüsse beim Nitrat auf. Die generell reduzierenden Verhältnisse verursachen Überschreitungen bei gelöstem Eisen und Mangan sowie bei einer Einzelprobe mit erhöhtem Gehalt an organischer Substanz bei Ammonium und beim pH-Wert. Einzelne Grenzwertüberschreitungen wurden bei Arsen und Quecksilber beobachtet.

An 87 Grundwasserproben wurden Radonmessungen durchgeführt (vgl. Kap. 4.3). Die Gehalte schwanken von unter Nachweisgrenze bis maximal 152 Bq/l (Medianwert 8 Bq/l). Die Urangehalte liegen bei mehr als der Hälfte der Proben über 2 µg/l (max. ca. 39 µg/l).

Inhaltsstoffe mit 50%-Quantil	50%	-(10%–90%)-Quantil		
> 5 mg/l:	Ca	123 (80,9–140,3)	HCO ₃	389 (266–466)
	Mg	25,5 (17,1–33,2)	CI	40,9 (13,2–73,8)
	Na	9,2 (4,9–22,8)	SO_4	33,5 (14,6–55,5)
			NO_3	29,8 (< NG-61,3)
> 1 mg/l:	Si	4,3 (3,0–6,6)	К	1,6 (0,6–5,5)
> 100 µg/l:	Sr	259 (166–433)		
> 10 µg/l:	Ва	68 (40–141)	В	12,6 (< BG-43,2)
> 1 µg/l:	Zn	5,55 (1,20–41,5)	AI	4,78 (< NG-22,5)
	Li	2,63 (1,26–4,95)	U	2,01 (0,53–7,42)
	Mn	1,23 (< NG–371)		
Parameter	50%	-(10%–90%)-Quantil		Bemerkung
Parameter Wassertemperatur [°C]:	50% 10,5	-(10%–90%)-Quantil (8,8–12,6)		Bemerkung
Parameter Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]:	50% 10,5 800	-(10%–90%)-Quantil (8,8–12,6) (577–955)		Bemerkung
Parameter Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]:	50% 10,5 800 684	-(10%–90%)-Quantil (8,8–12,6) (577–955) (464–769)		Bemerkung mittlerer Mineralstoffgehalt
Parameter Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]:	50% 10,5 800 684 23,8	-(10%–90%)-Quantil (8,8–12,6) (577–955) (464–769) (15,8–26,6)		Bemerkung mittlerer Mineralstoffgehalt hart (WRMG 2007)
Parameter Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]: Sättigungsindex:	50% 10,5 800 684 23,8 -0,40	-(10%–90%)-Quantil (8,8–12,6) (577–955) (464–769) (15,8–26,6) 0 (-0,69– -0,28)		Bemerkung mittlerer Mineralstoffgehalt hart (WRMG 2007) kalkaggressiv
Parameter Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]: Sättigungsindex: Freie Kohlensäure [mg/l]:	50% 10,5 800 684 23,8 -0,40 43,1	-(10%–90%)-Quantil (8,8–12,6) (577–955) (464–769) (15,8–26,6) 0 (-0,69– -0,28) (21,6–67,8)		Bemerkung mittlerer Mineralstoffgehalt hart (WRMG 2007) kalkaggressiv
ParameterWassertemperatur [°C]:Elektr. Leitfähigkeit [µS/cm]:Gesamtmineralisation [mg/l]:Gesamthärte [°dH]:Sättigungsindex:Freie Kohlensäure [mg/l]:pH-Wert:	50% 10,5 800 684 23,8 -0,40 43,1 7,09	-(10%–90%)-Quantil (8,8–12,6) (577–955) (464–769) (15,8–26,6) (15,8–26,6) (15,8–26,6) (21,6–67,8) (6,94–7,30)		Bemerkung mittlerer Mineralstoffgehalt hart (WRMG 2007) kalkaggressiv neutral
Parameter Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]: Sättigungsindex: Freie Kohlensäure [mg/l]: pH-Wert: Sauerstoffgehalt [mg/l]:	50% 10,5 800 684 23,8 -0,40 43,1 7,09 3,0 (-(10%–90%)-Quantil (8,8–12,6) (577–955) (464–769) (15,8–26,6) 0 (-0,69– -0,28) (21,6–67,8) (6,94–7,30) 0 (2–9,7)		Bemerkung mittlerer Mineralstoffgehalt hart (WRMG 2007) kalkaggressiv neutral
ParameterWassertemperatur [°C]:Elektr. Leitfähigkeit [µS/cm]:Gesamtmineralisation [mg/l]:Gesamthärte [°dH]:Sättigungsindex:Freie Kohlensäure [mg/l]:pH-Wert:Sauerstoffgehalt [mg/l]:Eisen [mg/l]:	50% 10,5 800 684 23,8 -0,40 43,1 7,09 3,0 (< NO	-(10%-90%)-Quantil (8,8-12,6) (577-955) (464-769) (15,8-26,6) (15,8-26,6) (21,6-67,8) (6,94-7,30) (0,2-9,7) (0,2-9,7) (0,2-9,7)		Bemerkung mittlerer Mineralstoffgehalt hart (WRMG 2007) kalkaggressiv neutral max. 4,9; Grenzwert TRINKWV (2001): 0,2 mg/l

Tab. 4-3: Statistische Auswertung wichtiger Parameter von Grundwasserproben aus dem Quartär des Donautals (Datengrundlage: 132 Rohwasserproben; Probennahmezeitraum: vorwiegend 2004–2006).

Abb. 4-3: Chemische Zusammensetzung der Grundwässer aus dem Quartär des Donautals im Piper-Diagramm mit der klassifikatorischen Teilung nach FURTAK & LANGGUTH (1967).

Abb. 4-4: Chemische Zusammensetzung der Grundwässer aus dem Quartär des Donautals im Stiff-Diagramm (Medianwerte).

Schotter und Sande des intrakristallinen Tertiärs

Die im Süden des Kristallinen Grundgebirges der Planungsregion 12 Donau-Wald auftretenden intrakristallinen Becken sind mit tertiären Schottern und Sanden gefüllt, die Quarz-dominiert sind und meist nur dünne schluffig-tonige Einschaltungen enthalten. Die Mächtigkeiten erreichen bis zu etwa 30 Meter. Die Einheit stellt einen nur lokal bedeutenden Poren-Grundwasserleiter mit hohen Durchlässigkeiten bei geringen Ergiebigkeiten dar.

Bei den Grundwässern aus den Schottern und Sanden des intrakristallinen Tertiärs handelt es sich um Calcium-Natrium-Chlorid-Hydrogenkarbonatwässer mit einem geringen Mineralstoffgehalt und erhöhten Anteilen an Magnesium, Silicium und Nitrat (vorwiegend "alkalische, überwiegend chloridische Grundwässer" nach FURTAK & LANGGUTH, 1967). Die Rohwasserproben liegen im Bereich schwach saurer pH-Werte. Nach ihrem Gehalt an Erdalkalien werden sie gemäß WRMG (2007) überwiegend in den Härtebereich "weich" eingestuft.

Das Grundwasser steht nicht vollständig im Kalk-Kohlensäure-Gleichgewicht, sondern verhält sich deutlich kalkaggressiv (negativer Calciumkarbonat-Sättigungsindex). Aufgrund des geringen Mineralstoffgehalts und des niedrigen pH-Werts ist mit einer gewissen Betonaggressivität zu rechnen. Die Parameter pH-Wert, Magnesium und Sulfat geben keinen Hinweis auf Betonaggressivität nach DIN 4030.

Die Grundwasserproben aus Quellen sind bezüglich des Sauerstoffgehalts vorwiegend teilgesättigt bis gesättigt, die Brunnenwasserproben sind teilreduziert. Die Werte an gelöstem Eisen und Mangan liegen nur selten über den Nachweisgrenzen und deutlich unter den jeweiligen Grenzwerten der TRINKWV (2001), so dass bei sachgemäßem Ausbau oder Betrieb von Brunnen nur eine geringe Gefahr der vorzeitigen Brunnenverockerung gegeben ist.

An 8 Grundwasserproben wurden Radonmessungen durchgeführt (vgl. Kap. 4.3). Die Gehalte schwanken von unter Nachweisgrenze bis maximal 64 Bq/l (Medianwert 27 Bq/l). Die Urangehalte liegen bei maximal 0,46 µg/l.

Tab. 4-4: Statistische Auswertung wichtiger Parameter von Grundwasserproben aus den Schottern und Sanden des intrakristallinen Tertiärs (Datengrundlage: 8 Rohwasserproben; Probennahmezeitraum: vorwiegend 2004–2006).

Inhaltsstoffe mit 50%-Quantil	50%	-Quantil (Min–Max)		
> 5 mg/l:	Ca	12,2 (7,0–32,5)	HCO ₃	19,2 (12,8–90,3)
	Na	6,6 (2,7–10,2)	CI	17,2 (1,6–32,8)
	Si	5,1 (2,9–12,9)	NO_3	8,8 (< NG-24,5)
> 1 mg/l:	Mg	4,4 (2,3–11,3)		
> 100 µg/l:	К	554 (< NG–2,266)		
> 10 µg/l:	Ва	50 (9–70)	Sr	36 (17–168)
	AI	15,6 (7,6–151)		
> 1 µg/l:	Zn	4,90 (1,64–10,7)	Ni	2,58 (0,67–3,74)
	Li	2,11 (0,80–17,0)	Rb	1,73 (< NG–5,24)
Parameter	50%	-Quantil (Min–Max)		Bemerkung
Wassertemperatur [°C]:	9,6 (7,4–11,0)		
Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]:	9,6 (168	7,4–11,0) (71–297)		
Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]:	9,6 (168 94,6	7,4–11,0) (71–297) (60,8–219)		geringer Mineralstoffgehalt
Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]:	9,6 (168 94,6 2,7 (7,4–11,0) (71–297) (60,8–219) 1,5–7,1)		geringer Mineralstoffgehalt weich (WRMG 2007)
Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]: Sättigungsindex:	9,6 (168 94,6 2,7 (-3,27	7,4–11,0) (71–297) (60,8–219) 1,5–7,1) 7 (-4,59– -2,28)		geringer Mineralstoffgehalt weich (WRMG 2007) kalkaggressiv
Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]: Sättigungsindex: Freie Kohlensäure [mg/l]:	9,6 (168 94,6 2,7 (-3,27 39,2	7,4–11,0) (71–297) (60,8–219) 1,5–7,1) 7 (-4,59– -2,28) (4,4–75,7)		geringer Mineralstoffgehalt weich (WRMG 2007) kalkaggressiv
Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]: Sättigungsindex: Freie Kohlensäure [mg/l]: pH-Wert:	9,6 (168 9 94,6 2,7 (-3,27 39,2 6,22	7,4–11,0) (71–297) (60,8–219) 1,5–7,1) 7 (-4,59– -2,28) (4,4–75,7) (5,30–7,40)		geringer Mineralstoffgehalt weich (WRMG 2007) kalkaggressiv schwach sauer; schwach, z.T. stark Beton angreifend (DIN 4030-1)
Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]: Sättigungsindex: Freie Kohlensäure [mg/l]: pH-Wert: Sauerstoffgehalt [mg/l]:	9,6 (168) 94,6 2,7 (-3,27 39,2 6,22 9,65	7,4–11,0) (71–297) (60,8–219) 1,5–7,1) 7 (-4,59– -2,28) (4,4–75,7) (5,30–7,40) (2,2–10,4)		geringer Mineralstoffgehalt weich (WRMG 2007) kalkaggressiv schwach sauer; schwach, z.T. stark Beton angreifend (DIN 4030-1)
Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]: Sättigungsindex: Freie Kohlensäure [mg/l]: pH-Wert: Sauerstoffgehalt [mg/l]: Eisen [mg/l]:	9,6 (168) 94,6 2,7 (-3,27 39,2 6,22 9,65 < NG	7,4-11,0) (71-297) ($60,8-219$) 1,5-7,1) 7 (-4,592,28) (4,4-75,7) (5,30-7,40) (2,2-10,4) (2,2-10,4) (2,2-10,4)		geringer Mineralstoffgehalt weich (WRMG 2007) kalkaggressiv kalkaggressiv schwach sauer; schwach, z. T. stark Beton angreifend (DIN 4030-1) Grenzwert TRINKWV (2001): 0,2 mg/l

Abb. 4-5: Chemische Zusammensetzung der Grundwässer aus Schottern und Sanden des intrakristallinen Tertiärs im Piper-Diagramm mit der klassifikatorischen Teilung nach FURTAK & LANGGUTH (1967).

Abb. 4-6: Chemische Zusammensetzung der Grundwässer aus Schottern und Sanden des intrakristallinen Tertiärs im Stiff-Diagramm (Medianwerte).

Sedimente der Tertiärbuchten und Braunkohlentertiär (OSM)

Die Sedimente in den Tertiärbuchten bestehen überwiegend aus Tonen und Schluffen, in die neben Einschaltungen von Fein- bis Mittelsanden einzelne Lagen von tonigen Grobsanden und Feinkiesen sowie Kohle führende Lagen und Flöze in Form von Kohletonen, unzersetzten Hölzern oder faserig-blättriger Braunkohlen im Dezimeter- bis Meterbereich eingeschaltet sind. Die größten Mächtigkeiten betragen bis zu 120 m. Die bis zu 200 m mächtigen Ablagerungen des Braunkohlentertiärs (OSM) unter dem Donautal-Quartär ähneln den Füllungen der Tertiärbuchten, sind dabei aber sandreicher sowie Karbonat führend. Die hydrogeochemische Einheit Sedimente der Tertiärbuchten und Braunkohlentertiär (OSM) stellt einen nur lokal bedeutenden Poren-Grundwasserleiter mit geringen, in den gröberklastischen Bereichen mäßigen bis mittleren Durchlässigkeiten und geringen Ergiebigkeiten dar.

Bei den Grundwässern der hydrogeochemischen Einheit Sedimente der Tertiärbuchten und Braunkohlentertiär (OSM) handelt es sich um Calcium-Magnesium-Hydrogenkarbonatwässer mit einem geringen Mineralgehalt und erhöhten Gehalten an Natrium, Silicium, Chlorid und Nitrat (vorwiegend "normal erdalkalische, überwiegend hydrogenkarbonatische Grundwässer" nach FURTAK & LANGGUTH, 1967). Die Rohwasserproben liegen im schwach sauren bis neutralen pH-Wert-Bereich. Nach ihrem Gehalt an Erdalkalien werden sie gemäß WRMG (2007) überwiegend in den Härtebereich "weich" bis "mittel" eingestuft.

Das Grundwasser steht nicht vollständig im Kalk-Kohlensäure-Gleichgewicht, sondern verhält sich schwach kalkaggressiv (negativer Calciumkarbonat-Sättigungsindex). Insbesondere der pH-Wert deutet auf eine teilweise starke Betonaggressivität gemäß DIN 4030-1, die Parameter pH-Wert, Magnesium und Sulfat geben keine Hinweise hierauf. Der relativ hohe Gehalt an Kohlensäure und die reduzierenden Verhältnisse werden vermutlich durch die auftretenden Vorkommen von Braunkohle, dem Abbau der im Grundwasserleiter verteilten organischen Substanz bzw. der Bodenauflage verursacht.

Die Grundwasserproben sind bezüglich des Sauerstoffgehalts vorwiegend teil- bis ungesättigt. Die Werte an gelöstem Eisen und Mangan liegen bei etwa einem Viertel der Analysen deutlich über den jeweiligen Grenzwerten der TRINKWV (2001), so dass insbesondere bei unsachgemäßem Ausbau oder Betrieb eine Gefahr der vorzeitigen Brunnenverockerung gegeben ist.

An 13 Grundwasserproben wurden Radonmessungen durchgeführt (vgl. Kap. 4.3). Die Gehalte schwanken von unter Nachweisgrenze bis maximal 120 Bq/l (Medianwert 12 Bq/l). Die Urangehalte liegen bei mehr als 90 Prozent der Proben unter 1 µg/l (max. 1,5 µg/l).
Tab. 4-5: Statistische Auswertung wichtiger Parameter von Grundwasserproben aus den Sedimenten der Tertiärbuchten und dem Braunkohlentertiär (OSM) (Datengrundlage: 24 Rohwasserproben; Probennahmezeitraum: 2001; 2004–2006).

Inhaltsstoffe mit 50%-Quantil	50%	-(10%–90%)-Quantil		
> 5 mg/l:	Ca	31,9 (9,2–70,7)	HCO ₃	117,5 (43,0–294)
	Si	8,4 (5,1–16,3)	NO_3	10,0 (< NG–25,8)
	Mg	8,1 (3,0–19,0)	CI	6,9 (< BG-19,2)
	Na	5,2 (3,4–15,4)		
> 1 mg/l:	К	1,4 (0,4–6,0)		
> 100 µg/l:	-			
> 10 µg/l:	Ва	92,1 (25,3–354)	Sr	85,2 (30,5–587)
	AI	13,7 (2,9–48,2)		
> 1 µg/l:	Zn	4,09 (1,07–18,8)	Li	3,01 (0,77–23,1)
	В	2,95 (< NG-29,24)	Ni	1,09 (< NG-2,51)
Parameter	50%·	-(10%–90%)-Quantil		Bemerkung
Wassertemperatur [°C]:	10,7	(9,8–12,7)		
Elektr. Leitfähigkeit [µS/cm]:	247	(115–553)		
Gesamtmineralisation [mg/l]:	208	(88,9–456)		geringer Mineralstoffgehalt
Gesamthärte [°dH]:	6,4 (2,0–14,0)		weich bis mittel (WRMG 2007)
Sättigungsindex:	-1,84	4 (-3,02– -0,45)		kalkaggressiv
Freie Kohlensäure [mg/l]:	31,9	(7,2–62,4)		
pH-Wert:	6,65	(6,16–7,31)		schwach sauer; z.T. schwach Beton angreifend (DIN 4030-1)
Sauerstoffgehalt [mg/l]:	5,1 (0,6–8,6)		
Eisen [mg/l]:	< BG	G (< NG-1,03)		max. 3,96; Grenzwert ТкілкwV (2001): 0,2 mg/l
Mangan [mg/l]:	0,00	66 (0,0004–0,112)		max. 0,3938; Grenzwert ТкілкwV (2001): 0,05 mg/l

Abb. 4-7: Chemische Zusammensetzung der Grundwässer aus den Sedimenten der Tertiärbuchten und dem Braunkohlentertiär (OSM) im Piper-Diagramm mit der klassifikatorischen Teilung nach FURTAK & LANGGUTH (1967).

Abb. 4-8: Chemische Zusammensetzung der Grundwässer aus den Sedimenten der Tertiärbuchten und dem Braunkohlentertiär (OSM) im Stiff-Diagramm (Medianwerte der Analysen).

Ortenburger Schotterabfolge

Die Ortenburger Schotterabfolge bezeichnet eine grobklastische Einheit innerhalb der Oberen Brackwasser-/Älteren Oberen Süßwassermolasse, die aus mittel- bis grobsandigem Fein- bis Grobkies mit geringen Schluff- und Steinanteilen aufgebaut wird, der kleinräumig von Fein- bis Mittelsandlagen mit wechselnder Geröllführung unterbrochen ist. Die Mächtigkeiten betragen bis zu etwa 50 m. Im Bereich zwischen Forstharter Rücken und Straubing handelt es sich um einen bedeutenden Poren-Grundwasserleiter mit mäßigen bis mittleren Durchlässigkeiten und hohen Ergiebigkeiten.

Die Grundwässer aus der Ortenburger Schotterabfolge sind als Calcium-Magnesium-Hydrogenkarbonatwässer mit einem mittleren Mineralgehalt und teilweise erhöhten Gehalten an Natrium, Silicium, Chlorid und Sulfat anzusprechen (vorwiegend "normal erdalkalische, überwiegend hydrogenkarbonatische bis alkalische Grundwässer" nach FURTAK & LANGGUTH, 1967). Die Rohwasserproben liegen im neutralen pH-Wert-Bereich; nach ihrem Gehalt an Erdalkalien werden sie gemäß WRMG (2007) überwiegend in den Härtebereich "mittel" mit Tendenz zu "hart" eingestuft.

Das Grundwasser steht nicht vollständig im Kalk-Kohlensäure-Gleichgewicht, sondern verhält sich schwach kalkaggressiv (negativer Calciumkarbonat-Sättigungsindex). Die Parameter pH-Wert, Magnesium und Sulfat geben keinen Hinweis auf Betonaggressivität nach DIN 4030.

Die Grundwasserproben sind bezüglich des Sauerstoffgehalts vorwiegend teilgesättigt bis sauerstofffrei. Die Werte an gelöstem Eisen und Mangan liegen bei etwa einem Viertel der Analysen deutlich über den jeweiligen Grenzwerten der TRINKWV (2001), so dass insbesondere bei unsachgemäßem Ausbau oder Betrieb eine Gefahr der vorzeitigen Brunnenverockerung gegeben ist. Einzelne Überschreitungen der Grenzwerte der TRINKWV (2001) treten bei Arsen auf.

An 16 Grundwasserproben wurden Radonmessungen durchgeführt (vgl. Kap. 4.3). Die Gehalte schwanken von unter Nachweisgrenze bis maximal 22 Bq/l (Medianwert 7 Bq/l). Die Urangehalte liegen bei fast 90% der Proben unter 1 µg/l (max. ca. 3,3 µg/l).

Tab. 4-6: Statistische Auswertung wichtiger Parameter von Grundwasserproben aus der Ortenburger Schotterabfolge (Datengrundlage: 25 Rohwasserproben; Probennahmezeitraum: 2000; 2002–2003; 2004–2006).

Inhaltsstoffe mit 50%-Quantil	50%	50%-(10%–90%)-Quantil				
> 5 mg/l:	Ca	61,6 (25,7–103)	HCO ₃	349 (205–416)		
	Mg	20,9 (10,3–28,9)	CI	21,2 (5,1–37,2)		
	Na	11,2 (5,2–73,2)	SO_4	7,86 (< NG-28,3)		
	Si	8,3 (6,5–11,4)				
> 1 mg/l:	К	1,7 (< BG-6,9)				
> 100 µg/l:	Sr	266 (101–832)				
> 10 µg/l:	Ва	54 (13–147)	В	47,0 (3,9–441)		
	Mn	34,6 (< NG-112)				
> 1 µg/l:	Zn	7,51 (0,35–21,0)	Li	7,21 (2,36–72,0)		
	AI	4,01 (< NG-29,2)	Rb	1,06 (0,18–10,9)		
Parameter	50%·	-(10%–90%)-Quantil		Bemerkung		
		(10/0 00/0) addition		zementang		
Wassertemperatur [°C]:	10,9	(9,9–14,6)				
Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]:	10,9 589	(9,9–14,6) (441–755)		Zomonday		
Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]:	10,9 589 505 ((9,9–14,6) (441–755) (464–769)		mittlerer Mineralstoffgehalt		
Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]:	10,9 589 505 12,4	(9,9–14,6) (441–755) (464–769) (6,1–21,0)		mittlerer Mineralstoffgehalt mittel bis hart (WRMG 2007)		
Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]: Sättigungsindex:	10,9 589 (505 (12,4 -0,45	(9,9–14,6) (441–755) (464–769) (6,1–21,0) 5 (-1,09– -0,29)		mittlerer Mineralstoffgehalt mittel bis hart (WRMG 2007) kalkaggressiv		
Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]: Sättigungsindex: Freie Kohlensäure [mg/l]:	10,9 589 (505 (12,4 -0,45 20,2	(9,9–14,6) (441–755) (464–769) (6,1–21,0) 5 (-1,09–-0,29) (5,6–45,8)		mittlerer Mineralstoffgehalt mittel bis hart (WRMG 2007) kalkaggressiv		
Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]: Sättigungsindex: Freie Kohlensäure [mg/l]: pH-Wert:	10,9 589 (505 (12,4 -0,45 20,2 7,23	(9,9-14,6) $(441-755)$ $(464-769)$ $(6,1-21,0)$ $(-1,090,29)$ $(5,6-45,8)$ $(6,89-7,80)$		mittlerer Mineralstoffgehalt mittel bis hart (WRMG 2007) kalkaggressiv vorwiegend neutral bis schwach alkalisch		
Wassertemperatur [°C]:Elektr. Leitfähigkeit [µS/cm]:Gesamtmineralisation [mg/l]:Gesamthärte [°dH]:Sättigungsindex:Freie Kohlensäure [mg/l]:pH-Wert:Sauerstoffgehalt [mg/l]:	10,9 589 (505 (12,4 -0,45 20,2 7,23 1,2 ((9,9-14,6) $(441-755)$ $(464-769)$ $(6,1-21,0)$ $(5,6-45,8)$ $(6,89-7,80)$ $(0,2-8,0)$		mittlerer Mineralstoffgehalt mittel bis hart (WRMG 2007) kalkaggressiv vorwiegend neutral bis schwach alkalisch		
Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]: Sättigungsindex: Freie Kohlensäure [mg/l]: pH-Wert: Sauerstoffgehalt [mg/l]: Eisen [mg/l]:	10,9 589 (505 (12,4 -0,45 20,2 7,23 1,2 (< NG	(9,9-14,6) $(441-755)$ $(464-769)$ $(6,1-21,0)$ $(5,6-45,8)$ $(6,89-7,80)$ $(0,2-8,0)$ $(6,0,0,0,0)$		mittlerer Mineralstoffgehalt mittel bis hart (WRMG 2007) kalkaggressiv vorwiegend neutral bis schwach alkalisch max. 3,821; Grenzwert TRINKWV (2001): 0,2 mg/l		

Abb. 4-9: Chemische Zusammensetzung der Grundwässer aus der Ortenburger Schotterabfolge im Piper-Diagramm mit der klassifikatorischen Teilung nach FURTAK & LANGGUTH (1967).

Abb. 4-10: Chemische Zusammensetzung der Grundwässer aus der Ortenburger Schotterabfolge im Stiff-Diagramm (Medianwerte).

Kreide/Tertiär-Mischwässer

In der Planungsregion 12 Donau-Wald werden südlich des Donaurandbruches unter den Molasseeinheiten bereichsweise kretazische Sedimente angetroffen. Im Ortenburger Senkungsfeld im südöstlichen Teil des Tertiär-Hügellandes treten Sedimente der Kreide oberflächennah auf bzw. streichen an der Oberfläche aus. Die Kreidesedimente werden aus mittel- bis grobkörnigem Quarzsandstein aufgebaut, der oft auch in entfestigter Form auftritt. Im Molasseuntergrund sind zunehmend Ton-, Tonstein- und Mergel-Einschaltungen zu beobachten. Es handelt sich um einen Kluft-Poren-Grundwasserleiter/Grundwassergeringleiter mit geringen bis mäßigen Durchlässigkeiten. Wasserwirtschaftlich werden die Kreidesedimente in der Region nur über größere Filterstrecken und in Verbindung mit Einheiten des überlagernden Tertiärs (Braunkohlentertiär (OSM), Ortenburger Schotterabfolge, Glaukonitsande und Blättermergel) genutzt. Deshalb werden die Kreide/Tertiär-Mischwässer zu einer eigenen Einheit zusammengefasst.

Bei den Kreide/Tertiär-Mischwässern handelt es sich um Calcium-Magnesium-Hydrogenkarbonatwässer mit einem geringen Mineralstoffgehalt und erhöhten Gehalten an Natrium, Chlorid, Sulfat und Nitrat (vorwiegend "normal erdalkalische, überwiegend hydrogenkarbonatische Grundwässer" nach Furtak & Langguth, 1967).

Die Rohwasserproben liegen im neutralen bis schwach alkalischen pH-Wert-Bereich. Nach ihrem Gehalt an Erdalkalien werden sie gemäß WRMG (2007) überwiegend in den Härtebereich "mittel" eingestuft.

Das Grundwasser steht nicht vollständig im Kalk-Kohlensäure-Gleichgewicht, sondern verhält sich schwach kalkaggressiv (negativer Calciumkarbonat-Sättigungsindex). Weitere Hinweise auf nennenswerte Betonaggressivität gemäß DIN 4030-1 sind bei den hierfür relevanten Parametern nicht gegeben.

Die Grundwasserproben werden mit zunehmender Bohrtiefe bezüglich des Sauerstoffgehalts zunehmend reduzierend bis sauerstofffrei. Die Werte an gelöstem Eisen und Mangan liegen meist unter der Nachweisgrenze, so dass bei sachgemäßem Ausbau oder Betrieb keine Gefahr der vorzeitigen Brunnenverockerung gegeben ist.

An 3 Grundwasserproben wurden Radonmessungen durchgeführt. Die Gehalte schwanken von unter Nachweisgrenze bis maximal 17 Bq/I (Medianwert 8 Bq/I). Das Maximum der Urangehalte liegt bei 2 µg/I.

Inhaltsstoffe mit 50%-Quantil	50%	-Quantil (Min–Max)		
> 5 mg/l:	Ca	55,1 (28,2–72,3)	HCO ₃	257 (205–366)
	Mg	16,2 (11,7–19,7)	SO_4	40,9 (13,2–73,8)
	Si	8,9 (6,5–13,9)	CI	7,3 (< NG-39,2)
> 1 mg/l:	Na	4,7 (2,9–95,0)	К	1,0 (< BG-9,0)
> 100 µg/l:	Sr	213 (86–778)		
> 10 µg/l:	Ва	15,3 (3,9–265)		
> 1 µg/l:	Mn	8,56 (< NG–28,6)	Li	8,35 (2,79–89,2)
	В	5,2 (< NG–541)	Zn	2,81 (0,37–933)
	Rb	2,58 (< NG-17,3)		
Parameter	50%	-Quantil (Min–Max)		Bemerkung
Wassertemperatur [°C]:	11,0	(9,9–13,1)		
Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]:	11,0 440	(9,9–13,1) (323–670)		
Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]:	11,0 440 385	(9,9–13,1) (323–670) (320–565)		vorwiegend geringer Mineralstoffgehalt
Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]:	11,0 440 385 11,0	(9,9–13,1) (323–670) (320–565) (7,1–13,9)		vorwiegend geringer Mineralstoffgehalt mittel (WRMG 2007)
Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]: Sättigungsindex:	11,0 440 385 11,0 -0,47	(9,9–13,1) (323–670) (320–565) (7,1–13,9) 7 (-0,94– -0,12)		vorwiegend geringer Mineralstoffgehalt mittel (WRMG 2007) kalkaggressiv
Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]: Sättigungsindex: Freie Kohlensäure [mg/l]:	11,0 440 385 11,0 -0,47 7,9 ((9,9–13,1) (323–670) (320–565) (7,1–13,9) 7 (-0,94– -0,12) 2,6–20,2)		vorwiegend geringer Mineralstoffgehalt mittel (WRMG 2007) kalkaggressiv
Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]: Sättigungsindex: Freie Kohlensäure [mg/l]: pH-Wert:	11,0 440 385 11,0 -0,47 7,9 (7,50	(9,9–13,1) (323–670) (320–565) (7,1–13,9) 7 (-0,94– -0,12) 2,6–20,2) (7,14–8,20)		vorwiegend geringer Mineralstoffgehalt mittel (WRMG 2007) kalkaggressiv neutral bis schwach alkalisch
Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]: Sättigungsindex: Freie Kohlensäure [mg/l]: pH-Wert: Sauerstoffgehalt [mg/l]:	11,0 440 385 11,0 -0,47 7,9 (7,50 3,1 ((9,9–13,1) (323–670) (320–565) (7,1–13,9) 7 (-0,94– -0,12) 2,6–20,2) (7,14–8,20) 0,3–10,5)		vorwiegend geringer Mineralstoffgehalt mittel (WRMG 2007) kalkaggressiv neutral bis schwach alkalisch
Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]: Sättigungsindex: Freie Kohlensäure [mg/l]: pH-Wert: Sauerstoffgehalt [mg/l]: Eisen [mg/l]:	11,0 440 385 11,0 -0,47 7,9 (7,50 3,1 (< NO	(9,9-13,1) $(323-670)$ $(320-565)$ $(7,1-13,9)$ $(-0,940,12)$ $2,6-20,2)$ $(7,14-8,20)$ $0,3-10,5)$ $G (< NG-0,98)$		Vorwiegend geringer Mineralstoffgehalt mittel (WRMG 2007) kalkaggressiv neutral bis schwach alkalisch Grenzwert TRINKWV (2001): 0,2 mg/l

Tab. 4-7: Statistische Auswertung wichtiger Parameter von Kreide/Tertiär-Mischwässern (Datengrundlage: 8 Rohwasserproben; Probennahmezeitraum: 2003–2006).

Abb. 4-11: Chemische Zusammensetzung der Kreide/Tertiär-Mischwässer im Piper-Diagramm mit der klassifikatorischen Teilung nach FURTAK & LANGGUTH (1967).

Abb. 4-12: Chemische Zusammensetzung der Kreide/Tertiär-Mischwässer im Stiff-Diagramm (Medianwerte).

Dogger/Malm-Mischwässer

Die Dogger/Malm-Mischwässer entstammen aus Jura-Schollen am Donaurandbruch sowie dem Ortenburger Senkungsfeld. Die Brunnen erschließen vorwiegend den Malm, allerdings sind stets auch Anteile des Doggers mit verfiltert, so dass diese Wässer als Mischeinheit ausgewertet werden. Es handelt sich um Festgesteine (Kalkstein unterschiedlicher Ausprägung mit Einschaltungen von Mergelstein und (Kalk-)Sandstein). Die Einheit ist als Kluft-(Karst-)Grundwasserleiter/ Grundwassergeringleiter mit stark variablen Durchlässigkeiten und sehr unterschiedlichen Ergiebigkeiten anzusprechen. Besonders in der Nähe von Störungszonen sind zunehmende Wasserwegsamkeiten und hohe Ergiebigkeiten zu erwarten.

Bei den Dogger/Malm-Mischwässern handelt es sich um Calcium-Magnesium-Hydrogenkarbonatwässer mit einem mittleren Mineralstoffgehalt und erhöhten Gehalten an Natrium, Silicium, Chlorid, Sulfat und Nitrat (vorwiegend "normal erdalkalische, überwiegend hydrogenkarbonatische Grundwässer" nach FURTAK & LANGGUTH, 1967). Die Rohwasserproben liegen im neutralen pH-Wert-Bereich, nach ihrem Gehalt an Erdalkalien werden sie gemäß WRMG (2007) überwiegend in den Härtebereich "hart" eingestuft.

Das Grundwasser steht nicht vollständig im Kalk-Kohlensäure-Gleichgewicht, sondern verhält sich schwach kalkaggressiv (negativer Calciumkarbonat-Sättigungsindex). Die Parameter pH-Wert, Magnesium und Sulfat geben keinen Hinweis auf Betonaggressivität nach DIN 4030.

Bezüglich des Sauerstoffgehalts sind die Wässer aus den flacheren Brunnen noch vorwiegend teilgesättigt und zeigen keine nachweisbaren Gehalte an gelöstem Eisen und Mangan. Mit zunehmender Tiefe treten auch sauerstoffungesättigte Verhältnisse mit Überschreitungen des jeweiligen Grenzwerts der TRINKWV (2001) für gelöstes Eisen und Mangan und entsprechender Gefahr der vorzeitigen Brunnenverockerung bei unsachgemäßem Ausbau oder Betrieb auf.

An 5 Grundwasserproben wurden Radonmessungen (vgl. Kap. 4.3) durchgeführt. Die Gehalte schwanken von unter Nachweisgrenze bis maximal 22 Bq/l (Medianwert 15 Bq/l). Die Urangehalte liegen bei mehr als der Hälfte der Proben unter 1 μ g/l (max. 4,4 μ g/l).

Tab. 4-8: Statistische Auswertung wichtiger Parameter von Dogger/Malm-Mischwässern (Datengrundlage: 7 Rohwasserproben; Probennahmezeitraum: 2004–2006).

Inhaltsstoffe mit 50%-Quantil	50%	-Quantil (Min–Max)		
> 5 mg/l:	Ca	103 (57,5–132)	HCO ₃	367 (208–488)
	Mg	23,9 (9,9–28,9)	CI	35,4 (3,8–70,5)
	Na	12,9 (4,4–22,2)	SO_4	22,5 (7,7–30,1)
	Si	6,1 (4,4–7,8)	NO_3	20,2 (7,2–40,4)
> 1 mg/l:	к	3,0 (< BG-5,2)		
> 100 µg/l:	Sr	170 (108–239)		
> 10 µg/l:	Ва	26,5 (9,6–135)	В	11,1 (< BG-96,8)
> 1 µg/l:	AI	4,22 (< NG-5,86)	Zn	5,01 (2,34–69,2)
	Li	2,52 (1,99–5,85)	Ni	1,47 (< NG-14,4)
Parameter	50%·	Quantil (Min–Max)		Bemerkung
Parameter Wassertemperatur [°C]:	50%· 10,5	-Quantil (Min–Max) (9,2–10,8)		Bemerkung
Parameter Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]:	50%· 10,5 752 (Quantil (Min–Max) (9,2–10,8) (361–914)		Bemerkung
Parameter Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]:	50%· 10,5 752 (615 (-Quantil (Min–Max) (9,2–10,8) (361–914) (308–756)		Bemerkung mittlerer Mineralstoffgehalt
Parameter Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]:	50%- 10,5 752 615 19,9	Quantil (Min–Max) (9,2–10,8) (361–914) (308–756) (10,3–25,1)		Bemerkung mittlerer Mineralstoffgehalt vorwiegend hart (WRMG 2007)
Parameter Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]: Sättigungsindex:	50% 10,5 752 (615 (19,9 -0,47	-Quantil (Min–Max) (9,2–10,8) (361–914) (308–756) (10,3–25,1) 7 (-0,58– -0,20)		Bemerkung i mittlerer Mineralstoffgehalt vorwiegend hart (WRMG 2007) kalkaggressiv
Parameter Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]: Sättigungsindex: Freie Kohlensäure [mg/l]:	50%- 10,5 752 (615 (19,9 -0,47 29,0	-Quantil (Min–Max) (9,2–10,8) (361–914) (308–756) (10,3–25,1) 7 (-0,58– -0,20) (6,2–77,4)		Bemerkung mittlerer Mineralstoffgehalt vorwiegend hart (WRMG 2007) kalkaggressiv
ParameterWassertemperatur [°C]:Elektr. Leitfähigkeit [µS/cm]:Gesamtmineralisation [mg/l]:Gesamthärte [°dH]:Sättigungsindex:Freie Kohlensäure [mg/l]:pH-Wert:	50%- 10,5 752 (615 (19,9 -0,47 29,0 7,22	-Quantil (Min–Max) (9,2–10,8) (361–914) (308–756) (10,3–25,1) (10,3–25,1) (6,2–77,4) (6,94–7,54)		Bemerkung
Parameter Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]: Sättigungsindex: Freie Kohlensäure [mg/l]: pH-Wert: Eisen [mg/l]:	50%- 10,5 752 (615 (19,9 -0,47 29,0 7,22 < NG	•Quantil (Min–Max) (9,2–10,8) (361–914) (308–756) (10,3–25,1) (-0,58–-0,20) (6,2–77,4) (6,94–7,54) S (< NG–0,92)		Bemerkung

Abb. 4-13: Chemische Zusammensetzung der Dogger/Malm-Mischwässer im Piper-Diagramm mit der klassifikatorischen Teilung nach Furtak & Langguth (1967).

Abb. 4-14: Chemische Zusammensetzung der Dogger/Malm-Mischwässer im Stiff-Diagramm (Medianwerte).

Malm-Thermalwässer

Die hier zusammengefassten Brunnen erschließen Grundwasser aus dem von der Molasse überdeckten Malmkarst in größeren Tiefen (> 700 m). Der Malm wird aus Kalksteinen unterschiedlicher Ausprägung mit Einschaltungen von Mergelstein aufgebaut und ist als Kluft-(Karst-) Grundwasserleiter mit stark variablen Durchlässigkeiten und sehr unterschiedlicher Wasserführung anzusprechen.

Das Wasser weist aufgrund seiner hohen Fördertiefe aus 800 bis etwa 1500 m u. GOK Thermalwassercharakter mit Temperaturen bis 60 °C sowie einem Mineralgehalt über 1000 mg/l auf und wird balneologisch als Bade- und Heilwasser genutzt (Bad Füssing, Bad Griesbach, Straubing).

Es handelt sich um fluoridhaltige Natrium-Calcium-Chlorid-Hydrogenkarbonatwässer mit einem mittleren Mineralgehalt und erhöhten Gehalten an Silicium und anderen Halogeniden (vorwiegend "alkalische, überwiegend hydrogenkarbonatische Grundwässer" nach FURTAK & LANGGUTH, 1967). Die Rohwasserproben liegen im neutralen bis schwach alkalischen pH-Wert-Bereich. Nach ihrem geringen Gehalt an Erdalkalien werden sie gemäß WRMG (2007) in den Härtebereich "weich" eingestuft.

Die Grundwasserproben zeigen stark reduzierende Verhältnisse mit vollständiger Sauerstoffund Nitratfreiheit und geringen Sulfatgehalten bei gleichzeitiger H₂S-Führung und Nachweis von Ammonium.

Das Grundwasser steht nicht vollständig im Kalk-Kohlensäure-Gleichgewicht, sondern verhält sich schwach kalkaggressiv (schwach negativer Calciumkarbonat-Sättigungsindex). Insbesondere aufgrund der geringen Wasserhärte und der deutlichen H₂S-Führung ist daher mit einer gewissen Betonaggressivität zu rechnen. Alle anderen nach DIN 4030-1 relevanten Parameter geben keine Hinweise auf Betonaggressivität.

Die Werte an gelöstem Eisen und Mangan liegen unter den jeweiligen Grenzwerten der TRINKWV (2001), bei sachgemäßem Ausbau oder Betrieb ist keine Gefahr der vorzeitigen Brunnenverockerung gegeben. Deutliche Überschreitungen der Grenzwerte der TRINKWV (2001) treten hingegen bei Natrium, Fluorid, Aluminium und Bor sowie vereinzelt beim Chlorid auf. An einer Grundwasserprobe wurde ein Radongehalt von 5 Bq/l bestimmt. Die Urangehalte liegen bei allen Proben unter 0,05 µg/l (max. 0,044 µg/l).

Inhaltsstoffe mit 50%-Quantil	50%·	50%-Quantil (Min–Max)				
> 5 mg/l:	Na	324 (289–430)	HCO ₃	567 (392–766)		
	Ca	20,8 (6,4–34,6)	CI	210 (143–368)		
	Si	18,3 (6,5–26,3)	F	6,75 (4,00–9,14)		
	К	13,5 (6,9–16,2)				
> 1 mg/l:	Mg	4,62 (1,61–6,61)	В	1,35 (1,07–1,77)		
	Br	1,15 (0,92–3,20)				
> 100 µg/l:	Sr	441 (334–893)	Li	236 (151–783)		
	Ва	114 (51–152)				
> 10 µg/l:	Rb	48,6 (26,3–66,0)	AI	37,3 (< NG–312)		
	Fe	26,0 (< NG-92,5)	Cs	18,2 (11,2–33,1)		
> 1 µg/l:	Mn	6,39 (2,01–10,6)	Zn	1,15 (0,35–3,01)		
Parameter	50%-	-Quantil (Min–Max)		Bemerkung		
Parameter Wassertemperatur [°C]:	50%· 50,4	-Quantil (Min–Max) (17,9–59,1)		Bemerkung		
Parameter Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]:	50%- 50,4 1648	-Quantil (Min–Max) (17,9–59,1) • (1415–1967)		Bemerkung		
Parameter Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]:	50%- 50,4 1648 1156	-Quantil (Min–Max) (17,9–59,1) 6 (1415–1967) (1113–1457)		Bemerkung mittlerer Mineralstoffgehalt		
Parameter Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]:	50%- 50,4 1648 1156 3,9 (-Quantil (Min–Max) (17,9–59,1) (1415–1967) (1113–1457) 1,3–6,4)		Bemerkung mittlerer Mineralstoffgehalt weich (WRMG 2007)		
Parameter Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]: Sättigungsindex:	50%- 50,4 1648 1156 3,9 (-0,19	-Quantil (Min–Max) (17,9–59,1) (1415–1967) (1113–1457) 1,3–6,4) 9 (-0,33– -0,06)		Bemerkung mittlerer Mineralstoffgehalt weich (WRMG 2007) schwach kalkaggressiv		
Parameter Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]: Sättigungsindex: Freie Kohlensäure [mg/l]:	50%- 50,4 1648 1156 3,9 (-0,19 19,8	-Quantil (Min–Max) (17,9–59,1) (1415–1967) (1113–1457) 1,3–6,4) 0 (-0,33– -0,06) (4,4–34,4)		Bemerkung mittlerer Mineralstoffgehalt weich (WRMG 2007) schwach kalkaggressiv		
Parameter Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]: Sättigungsindex: Freie Kohlensäure [mg/l]: pH-Wert:	50%- 50,4 1648 1156 3,9 (-0,19 19,8 7,24	-Quantil (Min–Max) (17,9–59,1) (1415–1967) (1113–1457) 1,3–6,4) (-0,33– -0,06) (4,4–34,4) (6,98–7,80)		Bemerkung mittlerer Mineralstoffgehalt weich (WRMG 2007) schwach kalkaggressiv neutral bis schwach alkalisch		
Parameter Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]: Sättigungsindex: Freie Kohlensäure [mg/l]: pH-Wert: Sauerstoffgehalt [mg/l]:	50%- 50,4 1648 1156 3,9 (-0,19 19,8 7,24 -	-Quantil (Min–Max) (17,9–59,1) (1415–1967) (1113–1457) 1,3–6,4) (-0,33– -0,06) (4,4–34,4) (6,98–7,80)		Bemerkung mittlerer Mineralstoffgehalt weich (WRMG 2007) schwach kalkaggressiv neutral bis schwach alkalisch		
Parameter Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]: Sättigungsindex: Freie Kohlensäure [mg/l]: pH-Wert: Sauerstoffgehalt [mg/l]: Eisen [mg/l]:	50%- 50,4 1648 1156 3,9 (-0,19 19,8 7,24 - 0,026	-Quantil (Min–Max) (17,9–59,1) 5 (1415–1967) (1113–1457) 1,3–6,4) 9 (-0,33– -0,06) (4,4–34,4) (6,98–7,80) 5 (< NG–0,093)		Bemerkung mittlerer Mineralstoffgehalt weich (WRMG 2007) schwach kalkaggressiv neutral bis schwach alkalisch Grenzwert TRINKWV (2001): 0,2 mg/l		

Tab. 4-9: Statistische Auswertung wichtiger Parameter von Malm-Thermalwässern (Datengrundlage: 6 Rohwasserproben; Probennahmezeitraum: 1990; 2004–2005).

Abb. 4-15: Chemische Zusammensetzung der Malm-Thermalwässer im Piper-Diagramm mit der klassifikatorischen Teilung nach Furtak & Langguth (1967).

Abb. 4-16: Chemische Zusammensetzung der Malm-Thermalwässer im Stiff-Diagramm (Medianwerte).

Saure bis intermediäre Plutonite

Die sauren bis intermediären Plutonite erstrecken sich über weite Bereiche des Kristallinen Grundgebirges. Vorwiegend werden Granite, Granodiorite und Diorite angetroffen, die z.T. porphyritisch ausgebildet sind. Vorwiegend im Tertiär wurden die Plutonite an der Oberfläche verwittert, so dass die Einheit in stark wechselnder Mächtigkeit von einer sandig-grusigen Zersatzzone bedeckt ist. Es handelt sich um einen Grundwasserleiter mit geringen bis mittleren Porendurchlässigkeiten und reliktischer Kluftdurchlässigkeit (Zersatz) über primär ±isotropem Kluft-Grundwasserleiter/ Grundwassergeringleiter mit sehr geringen bis mäßigen Durchlässigkeiten.

Die untersuchten Rohwasserproben aus den sauren bis intermediären Plutoniten des Kristallinen Grundgebirges stammen bis auf wenige Ausnahmen aus Quellen. Es handelt sich dabei vorwiegend um gering bis sehr gering mineralisierte Wässer mit Silicium als vorherrschendem Kation und geringen Mengen an Hydrogenkarbonat und Sulfat an nachweisbaren Anionen. Nach der Klassifikation von FURTAK & LANGGUTH (1967) handelt es sich vorwiegend um "erdalkalische Wässer mit höherem Alkaligehalt". Die Anionencharakteristik führt bei sehr niedrigen Absolutgehalten in die Zuordnung zur Gruppe "überwiegend hydrogenkarbonatisch"; bereits geringe Änderungen der Gehalte der entsprechenden Anionen bewirken eine Einstufung zu "überwiegend sulfatisch bzw. überwiegend chloridisch". Mit ihren sehr geringen Gehalten an Erdalkalien werden sie gemäß WRMG (2007) in den Härtebereich "weich" eingruppiert.

Das Grundwasser steht nicht im Kalk-Kohlensäure-Gleichgewicht, sondern verhält sich deutlich kalkaggressiv (negativer Calciumkarbonat-Sättigungsindex). Die Rohwasserproben liegen durchweg im schwach sauren pH-Wert-Bereich und überschreiten in der Regel den Grenzwert der TRINKWV (2001). Dadurch ergibt sich eine teilweise starke Betonaggressivität gemäß DIN 4030-1 für diesen Parameter. Der relativ hohe Gehalt an freier Kohlensäure wird durch den direkten atmosphärischen Eintrag, z. B. über Niederschläge und durch Abbauprozesse organischer Substanzen bei einer generell geringen Pufferkapazität des kristallinen Untergrundes verursacht.

Die beprobten Quellwässer sind vorwiegend sauerstoffgesättigt. Die Werte an gelöstem Eisen liegen meist unter der Nachweisgrenze und auch Mangan ist nur in geringen Spuren nachweisbar, so dass nur eine geringe Gefahr der vorzeitigen Brunnenverockerung bei sachgemäßem Ausbau und Betrieb gegeben ist. Überschreitungen der Grenzwerte der TRINKWV (2001) treten vereinzelt bei Nitrat, Eisen und Aluminium auf.

An 222 Grundwässern der sauren bis intermediären Plutonite wurden Radonmessungen durchgeführt (vgl. Kap. 4.3). Die Gehalte schwanken von kleiner Nachweisgrenze bis maximal 1128 Bq/l (Medianwert 148 Bq/l). Die Urangehalte liegen meist unter 1 μ g/l, der Maximalwert wurde mit 2,44 μ g/l bestimmt.

Tab. 4-10: Statistische Auswertung wichtiger Parameter von Grundwasserproben aus sauren bis intermediären Plutoniten des Kristallinen Grundgebirges (Datengrundlage: 231 Rohwasserproben; Probennahmezeitraum: 1990; 2001; 2004–2006).

Inhaltsstoffe mit 50%-Quantil	50%	-(10%–90%)-Quantil		
> 5 mg/l:	Si	7,38 (3,80–12,06)	HCO ₃	12,8 (< BG-35,4)
			SO_4	7,6 (< NG–16,4)
> 1 mg/l:	Ca	4,8 (1,7–16,6)	Na	4,1 (1,5–10,0)
	Mg	1,0 (0,4–3,7)	NO_3	4,8 (< NG-69,7)
	CI	1,6 (< BG–17,8)		
> 100 µg/l:	К	602 (< NG-1900)		
> 10 µg/l:	Sr	28,7 (12,3–93,2)	AI	17,2 (1,2–143)
> 1 µg/l:	Ва	7,85 (< NG-38,5)	Li	1,58 (0,38–6,39)
	Mn	1,22 (0,17–21,6)		
Parameter	50%·	-(10%–90%)-Quantil		Bemerkung
Wassertemperatur [°C]:	8,2 (6,3–10,2)		
Elektr. Leitfähigkeit [µS/cm]:	63,0	(31,0–190)		
Gesamtmineralisation [mg/l]: Mineralstoffgehalt	46,5	(22,2–123)		sehr geringer bis geringer Mineralstoffgehalt
Gesamthärte [°dH]:	0,8 (0,3–3,2)		weich (WRMG 2007)
Sättigungsindex:	-4,52	2 (-5,73– -3,36)		kalkaggressiv
Freie Kohlensäure [mg/l]:	18,0	(7,9–42,9)		
pH-Wert:	5,85	(5,30–6,27)		schwach sauer; schwach, z.T. stark Beton angreifend (DIN 4030-1)
Sauerstoffgehalt [mg/l]:	9,7 (7,9–11,0)		
Eisen [mg/l]:	< NG	G (< NG-< NG)		max. 0,74; Grenzwert TRINKWV (2001): 0,2 mg/l
Mangan [mg/l]:	0,00	12 (0,0002–0,0216)		max. 0,0863; Grenzwert ТкілкwV (2001): 0,05 mg/l

Abb. 4-17: Chemische Zusammensetzung der Grundwässer aus sauren bis intermediären Plutoniten des Kristallinen Grundgebirges im Piper-Diagramm mit der klassifikatorischen Teilung nach FURTAK & LANGGUTH (1967).

Abb. 4-18: Chemische Zusammensetzung der Grundwässer aus sauren bis intermediären Plutoniten des Kristallinen Grundgebirges im Stiff-Diagramm (Medianwerte).

Saure bis intermediäre Metamorphite

Neben den sauren bis intermediären Plutoniten stellen die sauren bis intermediären Metamorphite eine Einheit mit großer Verbreitung im Kristallinen Grundgebirge dar. Es handelt sich vorwiegend um Gneise und Metatexite unter sandig-lehmiger Zersatzdecke. Die Grundwasserleiter/-geringleiter verfügen in den Zersatzbereichen über geringe bis mäßige Porendurchlässigkeiten und reliktische Kluftdurchlässigkeit. Im unverwitterten Bereich liegt ein stark anisotroper Kluft-Grundwasserleiter/ Grundwassergeringleiter mit sehr geringen bis mäßigen Durchlässigkeiten vor.

Die untersuchten Rohwasserproben aus den sauren bis intermediären Metamorphiten des Kristallinen Grundgebirges stammen zum Großteil aus Quellen. Es handelt sich dabei vorwiegend um sehr gering mineralisierte Wässer mit Silicium und Hydrogenkarbonat als vorherrschende Hauptbestandteile. Nach der Klassifikation von FURTAK & LANGGUTH (1967) handelt es sich vorwiegend um "erdalkalische Wässer mit höherem Alkaligehalt". Die Anionencharakteristik führt bei sehr niedrigen Absolutgehalten in die Zuordnung zur Gruppe "überwiegend hydrogenkarbonatisch"; bereits geringe Änderungen der Gehalte der entsprechenden Anionen bewirken eine Einstufung zu "überwiegend sulfatisch bzw. chloridisch". Mit ihren sehr geringen Gehalten an Erdalkalien werden sie gemäß WRMG (2007) in den Härtebereich "weich" eingruppiert.

Die Rohwasserproben liegen im schwach sauren pH-Wert-Bereich und überschreiten in der Regel den Grenzwert der TRINKWV (2001). Dies bedingt eine schwache Betonaggressivität gemäß DIN 4030-1.

Das Grundwasser steht nicht im Kalk-Kohlensäure-Gleichgewicht, sondern verhält sich deutlich kalkaggressiv (negativer Calciumkarbonat-Sättigungsindex). Der relativ hohe Gehalt an freier Kohlensäure wird durch den direkten atmosphärischen Eintrag, z.B. über Niederschläge und durch Abbauprozesse organischer Substanzen bei einer generell geringen Pufferkapazität des kristallinen Untergrundes verursacht.

Die beprobten Quellwässer sind vorwiegend sauerstoffgesättigt. Die Werte an gelöstem Eisen liegen meist unter der Nachweisgrenze und Mangan ist nur in geringen Spuren nachweisbar, so dass bei sachgemäßem Ausbau und Betrieb nur eine geringe Gefahr der vorzeitigen Brunnenverockerung gegeben ist. Überschreitungen der Grenzwerte der TRINKWV (2001) treten bei gelöstem Eisen und Mangan nur selten auf; bei einigen Proben liegen beim Aluminium Grenzwertüberschreitungen nach TRINKWV (2001) vor.

An 321 Grundwässern wurden Radonmessungen durchgeführt (vgl. Kap. 4-3). Die Gehalte schwanken von kleiner Nachweisgrenze bis maximal 407 Bq/l (Medianwert 51 Bq/l). Der Maximalwert bei Uran wurde mit 0,34 µg/l bestimmt. Tab. 4-11: Statistische Auswertung wichtiger Parameter von Grundwasserproben aus sauren bis intermediären Metamorphiten des Kristallinen Grundgebirges (Datengrundlage: 381 Rohwasserproben; Probennahmezeitraum: vorwiegend 2003–2006).

Inhaltsstoffe mit 50%-Quantil	50%	-(10%–90%)-Quantil		
> 5 mg/l:	Si	6,4 (3,6–10,1)	HCO ₃	13,4 (6,1–33,6)
> 1 mg/l:	Ca	3,5 (1,6–14,5)	Na	2,7 (1,3–8,1)
	Mg	1,0 (0,5–3,8)		
> 100 µg/l:	К	749 (419–1690)		
> 10 µg/l:	Sr	27,4 (14,6–98,7)		
> 1 µg/l:	AI	7,78 (< NG–67,3)	Ва	4,34 (< NG-36,0)
	Zn	1,05 (< NG–7,52)		
Parameter	50%·	-(10%–90%)-Quantil		Bemerkung
Wassertemperatur [°C]:	7,6 (6,0–9,8)		
Elektr. Leitfähigkeit [µS/cm]:	52,0	(26,0–176)		
Gesamtmineralisation [mg/l]:	38,4	(21,1–115)		sehr geringer bis geringer Mineralstoffgehalt
Gesamthärte [°dH]:	0,7 (0,3–2,9)		weich (WRMG 2007)
Sättigungsindex:	-4,42	2 (-5,54– -3,38)		kalkaggressiv
Freie Kohlensäure [mg/l]:	17,6	(8,8–36,1)		
pH-Wert:	5,97	(5,51–6,40)		schwach sauer; schwach Beton angreifend (DIN 4030-1)
Sauerstoffgehalt [mg/l]:	9,9 (8,0–11,0)		
Eisen [mg/l]:	< NG	G (< NG-< BG)		max. 0,13; Grenzwert ТкілкwV (2001): 0,2 mg/l
Mangan [mg/l]:	0,00	06 (0,0005–0,005)		max. 0,086; Grenzwert ТкілкwV (2001): 0,05 mg/l

Abb. 4-19: Chemische Zusammensetzung der Grundwässer aus sauren bis intermediären Metamorphiten des Kristallinen Grundgebirges im Piper-Diagramm mit der klassifikatorischen Teilung nach FURTAK & LANGGUTH (1967).

Ultrametamorphite

Bei den Ultrametamorphiten des Kristallinen Grundgebirges handelt es sich um Migmatite und Diatexite mit überwiegend homogener Textur unter sandig-lehmiger Zersatzdecke. Die Grundwasserleiter/-geringleiter weisen in den Zersatzbereichen geringe bis mäßige Porendurchlässigkeiten und reliktische Kluftdurchlässigkeit auf, während im unverwitterten Bereich ein weitgehend isotroper Kluft-Grundwasserleiter/Grundwassergeringleiter mit sehr geringen bis mäßigen Durchlässigkeiten vorliegt.

Die Rohwasserproben aus den ultrametamorphen Gesteinen des Kristallinen Grundgebirges stammen hauptsächlich aus Quellen. Es handelt sich vorwiegend um Calcium-Hydrogenkarbonatwässer mit sehr geringem bis geringem Mineralstoffgehalt und erhöhtem Siliciumanteil. Nach der Klassifikation von FURTAK & LANGGUTH (1967) werden sie als vorwiegend "erdalkalische Wässer mit höherem Alkaligehalt" eingestuft, die Anionencharakteristik streut bei niedrigen Absolutgehalten stark zwischen den Gruppen "überwiegend hydrogenkarbonatisch" bzw. "sulfatisch" oder "chloridisch". Mit ihrem geringen Gehalt an Erdalkalien werden sie gemäß WRMG (2007) in den Härtebereich "weich" eingruppiert.

Das Grundwasser steht nicht im Kalk-Kohlensäure-Gleichgewicht, sondern verhält sich deutlich kalkaggressiv (negativer Calciumkarbonat-Sättigungsindex). Die Rohwasserproben liegen durchweg im schwach sauren pH-Wert-Bereich und überschreiten in der Regel den Grenzwert der TRINKWV (2001). Entsprechend liegt eine teilweise starke Betonaggressivität gemäß DIN 4030-1 für diesen Parameter vor. Der relativ hohe Gehalt an freier Kohlensäure wird durch den direkten atmosphärischen Eintrag, z. B. über Niederschläge und durch Abbauprozesse organischer Substanzen bei einer generell geringen Pufferkapazität des kristallinen Untergrundes verursacht.

Es handelt sich überwiegend um Quellwässer, die einen hohen Sauerstoffgehalt aufweisen (teilgesättigt bis gesättigt). Die Werte an gelöstem Eisen liegen nur in wenigen Fällen über dem Grenzwert der TRINKWV (2001). Mangan ist nur in geringen Spuren nachweisbar, so dass bei sachgemäßem Ausbau oder Betrieb nur eine geringe Gefahr der vorzeitigen Brunnenverockerung gegeben ist. Einzelne Überschreitungen der Grenzwerte der TRINKWV (2001) treten bei Aluminium auf.

An 104 Grundwässern wurden Radonmessungen durchgeführt (vgl. Kap. 4-3). Die Radongehalte schwanken von 16 bis maximal 298 Bq/l (Medianwert 53 Bq/l). Die Werte für Uran liegen nur in Ausnahmefällen über 1 µg/l (max. 1,8 µg/l).

Tab. 4-12: Statistische Auswertung wichtiger Parameter von Grundwasserproben aus den Ultrametamorphiten des Kristallinen Grundgebirges (Datengrundlage: 112 Rohwasserproben; Probennahmezeitraum: vorwiegend 2000–2001; 2004–2006).

Inhaltsstoffe mit 50%-Quantil	50%·	-(10%–90%)-Quantil		
> 5 mg/l:	Ca	9,6 (3,8–20,5)	HCO ₃	24,4 (10,4–67,7)
	Si	8,9 (5,7–13,8)	SO_4	10,9 (< BG-20,5)
	Na	5,7 (2,6–9,0)	NO_3	6,8 (< NG-25,3)
> 1 mg/l:	Mg	2,3 (0,9–6,0)	К	1,2 (< BG-2,4)
	CI	3,3 (< BG-10,7)		
> 100 µg/l:	Sr	70,7 (20,7–141)		
> 10 µg/l:	Ва	17,8 (< NG-68,8)		
> 1 µg/l:	AI	7,53 (< NG-82,3)	Li	2,15 (0,36–7,79)
	Zn	1,29 (< BG–9,65)		
Parameter	50%·	-(10%–90%)-Quantil		Bemerkung
Wassertemperatur [°C]:	9,1 (7,2–12,7)		
Elektr. Leitfähigkeit [µS/cm]:	109 ((47,1–146)		
Gesamtmineralisation [mg/l]:	79,2	(38,9–168)		sehr geringer bis geringer Mineralstoffgehalt
Gesamtmineralisation [mg/l]: Gesamthärte [°dH]:	79,2 2,0 ((38,9–168) 0,8–4,3)		sehr geringer bis geringer Mineralstoffgehalt weich (WRMG 2007)
Gesamtmineralisation [mg/l]: Gesamthärte [°dH]: Sättigungsindex:	79,2 2,0 (-3,63	(38,9–168) 0,8–4,3) 6 (-4,25– -2,53)		sehr geringer bis geringer Mineralstoffgehalt weich (WRMG 2007) kalkaggressiv
Gesamtmineralisation [mg/l]: Gesamthärte [°dH]: Sättigungsindex: Freie Kohlensäure [mg/l]:	79,2 2,0 (4 -3,63 22,9	(38,9–168) 0,8–4,3) 6 (-4,25– -2,53) (9,6–44,0)		sehr geringer bis geringer Mineralstoffgehalt weich (WRMG 2007) kalkaggressiv
Gesamtmineralisation [mg/l]: Gesamthärte [°dH]: Sättigungsindex: Freie Kohlensäure [mg/l]: pH-Wert:	79,2 2,0 (-3,63 22,9 6,09	(38,9–168) 0,8–4,3) 3 (-4,25– -2,53) (9,6–44,0) (5,73–6,44)		sehr geringer bis geringer Mineralstoffgehalt weich (WRMG 2007) kalkaggressiv schwach sauer; schwach Beton angreifend (DIN 4030-1)
Gesamtmineralisation [mg/l]: Gesamthärte [°dH]: Sättigungsindex: Freie Kohlensäure [mg/l]: pH-Wert: Sauerstoffgehalt [mg/l]:	79,2 2,0 (t -3,63 22,9 6,09 9,2 (t	(38,9–168) 0,8–4,3) 6 (-4,25– -2,53) (9,6–44,0) (5,73–6,44) 6,3–9,9)		sehr geringer bis geringer Mineralstoffgehalt weich (WRMG 2007) kalkaggressiv schwach sauer; schwach Beton angreifend (DIN 4030-1)
Gesamtmineralisation [mg/l]: Gesamthärte [°dH]: Sättigungsindex: Freie Kohlensäure [mg/l]: pH-Wert: Sauerstoffgehalt [mg/l]: Eisen [mg/l]:	79,2 2,0 (1 -3,63 22,9 6,09 9,2 (1 < NG	(38,9–168) 0,8–4,3) 6 (-4,25– -2,53) (9,6–44,0) (5,73–6,44) 6,3–9,9) 6 (< NG-< NG)		sehr geringer bis geringer Mineralstoffgehalt weich (WRMG 2007) kalkaggressiv schwach sauer; schwach Beton angreifend (DIN 4030-1) max. 0,554; Grenzwert TRINKWV (2001): 0,2 mg/l

Abb. 4-21: Chemische Zusammensetzung der Grundwässer aus den Ultrametamorphiten des Kristallinen Grundgebirges im Piper-Diagramm mit der klassifikatorischen Teilung nach FURTAK & LANGGUTH (1967).

Abb. 4-22: Chemische Zusammensetzung der Grundwässer aus den Ultrametamorphiten des Kristallinen Grundgebirges im Stiff-Diagramm (Medianwerte).

Tektonite/Ganggesteine

Bei den Tektoniten/Ganggesteinen des Kristallinen Grundgebirges handelt es sich um Kataklasite, Mylonite, Ultramylonite und deren überwiegend lehmige Zersatzprodukte, welche in der Regel Grundwassergeringleiter ohne nennenswerte Durchlässigkeit darstellen. Untergeordnet auftretende eingeschaltete hydrothermale Quarzgänge bilden Grundwasserleiter mit geringen bis mäßigen Kluftdurchlässigkeiten und geringer lateraler Ausdehnung, z. T. mit Drainagewirkung auf die umgebenden Tektonite.

Die untersuchten Rohwasserproben aus den Tektoniten und Ganggesteinen des Kristallinen Grundgebirges stammen ausschließlich aus Quellen. Es handelt sich dabei vorwiegend um sehr gering bis gering mineralisierte Wässer mit Calcium und Silicium sowie Hydrogenkarbonat, Chlorid und Nitrat als Hauptbestandteile. Nach der Klassifikation von FURTAK & LANGGUTH (1967) handelt es sich vorwiegend um "erdalkalische Grundwässer mit höherem Alkaligehalt". Die Anionencharakteristik streut bei sehr niedrigen Absolutgehalten zwischen den Gruppen "überwiegend hydrogenkarbonatisch" und "überwiegend chloridisch". Mit ihren sehr geringen Gehalten an Erdalkalien werden sie gemäß WRMG (2007) in den Härtebereich "weich" eingestuft.

Die Rohwasserproben liegen im schwach sauren pH-Wert-Bereich und überschreiten in der Regel den Grenzwert der TRINKWV (2001). Entsprechend liegt zum Teil eine starke Betonaggressivität gemäß DIN 4030-1 vor.

Das Grundwasser steht nicht im Kalk-Kohlensäure-Gleichgewicht, sondern verhält sich deutlich kalkaggressiv (negativer Calciumkarbonat-Sättigungsindex). Der relativ hohe Gehalt an freier Kohlensäure wird durch den direkten atmosphärischen Eintrag, z. B. über Niederschläge und durch Abbauprozesse organischer Substanzen bei einer generell geringen Pufferkapazität des kristallinen Untergrundes verursacht.

Die beprobten Quellwässer sind vorwiegend sauerstoffgesättigt. Die Werte an gelöstem Eisen liegen meist unter der Nachweisgrenze und auch Mangan ist nur in geringen Spuren nachweisbar, so dass nur eine geringe Gefahr der vorzeitigen Brunnenverockerung bei sachgemäßem Ausbau und Betrieb gegeben ist. Vereinzelt treten bei Aluminium Überschreitungen der Grenzwerte der TRINKWV (2001) auf.

An 15 Grundwasserproben wurden Radonmessungen durchgeführt (vgl. Kap. 4-3). Die Gehalte schwanken von kleiner Nachweisgrenze bis maximal 376 Bq/l (Medianwert 43 Bq/l). Die Urangehalte liegen deutlich unter 1 µg/l, der Maximalwert wurde mit 0,67 µg/l bestimmt.

Tab. 4-13: Statistische Auswertung wichtiger Parameter von Grundwasserproben aus den Tektoniten/ Ganggesteinen des Kristallinen Grundgebirges (Datengrundlage: 18 Rohwasserproben; Probennahmezeitraum: 2000; 2004–2005).

Inhaltsstoffe mit 50%-Quantil	50%	-(10%–90%)-Quantil		
> 5 mg/l:	Ca	9,8 (2,2–16,7)	HCO ₃	19,5 (10,9–35,8)
	Si	8,0 (6,0–12,9)	NO_3	7,6 (< BG-31,3)
			CI	7,2 (< BG-42,2)
> 1 mg/l:	Na	4,8 (2,1–13,6)	Mg	3,1 (0,7–4,8)
	К	1,0 (0,6–1,9)		
> 100 µg/l:	-			
> 10 µg/l:	Sr	34,6 (24,0–95,2)		
> 1 µg/l:	Ва	9,55 (< NG-128)	Zn	5,5 (< BG-18,9)
	AI	2,5 (< NG-82,5)	Li	1,84 (0,68–6,45)
Parameter	50%	-(10%–90%)-Quantil		Bemerkung
Wassertemperatur [°C]:	9,6 (6,5–10,7)		
Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]:	9,6 (129	6,5–10,7) (43,4–251)		
Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]:	9,6 (129 93,6	6,5–10,7) (<mark>43,4–251)</mark> (30,9–128)		sehr geringer bis geringer Mineralstoffgehalt
Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]:	9,6 (129 93,6 2,2 (6,5–10,7) (43,4–251) (30,9–128) 0,5–3,5)		sehr geringer bis geringer Mineralstoffgehalt weich (WRMG 2007)
Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]: Sättigungsindex:	9,6 (129 93,6 2,2 (-3,90	6,5–10,7) (43,4–251) (30,9–128) 0,5–3,5) 0 (-4,82– -3,24)		sehr geringer bis geringer Mineralstoffgehalt weich (WRMG 2007) kalkaggressiv
Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]: Sättigungsindex: Freie Kohlensäure [mg/l]:	9,6 (129) 93,6 2,2 (-3,90 28,6	6,5–10,7) (43,4–251) (30,9–128) 0,5–3,5) 0 (-4,82– -3,24) (17,6–47,9)		sehr geringer bis geringer Mineralstoffgehalt weich (WRMG 2007) kalkaggressiv
Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]: Sättigungsindex: Freie Kohlensäure [mg/l]: pH-Wert:	9,6 (129) 93,6 2,2 (-3,90 28,6 5,94	6,5–10,7) (43,4–251) (30,9–128) 0,5–3,5) 0 (-4,82– -3,24) (17,6–47,9) (5,78–6,30)		Sehr geringer bis geringer Mineralstoffgehalt weich (WRMG 2007) kalkaggressiv schwach sauer; schwach Beton angreifend (DIN 4030-1)
Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]: Sättigungsindex: Freie Kohlensäure [mg/l]: pH-Wert: Sauerstoffgehalt [mg/l]:	9,6 (129) 93,6 2,2 (-3,90 28,6 5,94 8,6 (6,5–10,7) (43,4–251) (30,9–128) 0,5–3,5) 0 (-4,82– -3,24) (17,6–47,9) (5,78–6,30) 5,5–10,3)		sehr geringer bis geringer Mineralstoffgehalt weich (WRMG 2007) kalkaggressiv schwach sauer; schwach Beton angreifend (DIN 4030-1)
Wassertemperatur [°C]: Elektr. Leitfähigkeit [µS/cm]: Gesamtmineralisation [mg/l]: Gesamthärte [°dH]: Sättigungsindex: Freie Kohlensäure [mg/l]: pH-Wert: Sauerstoffgehalt [mg/l]: Eisen [mg/l]:	9,6 (129) 93,6 2,2 (-3,90 28,6 5,94 8,6 (< NG	6,5–10,7) (43,4–251) (30,9–128) 0,5–3,5) 0 (-4,82– -3,24) (17,6–47,9) (5,78–6,30) 5,5–10,3) Θ (< NG–< NG)		kalkaggressiv kalkaggressiv schwach sauer; schwach Beton angreifend (DIN 4030-1) max. 0,040; Grenzwert TRINKWV (2001): 0,2 mg/l

Abb. 4-23: Chemische Zusammensetzung der Grundwässer aus den Tektoniten/Ganggesteinen des Kristallinen Grundgebirges im Piper-Diagramm mit der klassifikatorischen Teilung nach Furtak & Langguth (1967).

Abb. 4-24: Chemische Zusammensetzung der Grundwässer aus den Tektoniten/Ganggesteinen des Kristallinen Grundgebirges im Stiff-Diagramm (Medianwerte).

Oberflächennahes Kristallin

Die Grundwässer aus dem oberflächennahen Kristallin verfügen aufgrund ihres geringen Alters und der dadurch bedingt geringen Grundwasser-Gesteins-Interaktion über eine besonders geringe Mineralisierung und werden daher hier als eigene Gruppe ausgewiesen. Eine Differenzierung nach Lithogruppen entsprechend der Unterteilung bei den "tieferen" Kristallinwässern erfolgt dabei nicht. Die Grundwasserleiter/-geringleiter weisen in den lehmig-sandigen bis sandig-grusigen Zersatzbereichen geringe bis mäßige Porendurchlässigkeiten sowie im in-situ Zersatz wechselnde Durchlässigkeiten entlang reliktischer Klüfte auf.

Die Rohwasserproben aus den oberflächennahen Abschnitten des Kristallinen Grundgebirges stammen hauptsächlich aus Quellen. Es handelt sich dabei vorwiegend um sehr gering bis gering mineralisierte Silicium-Hydrogenkarbonatwässer mit sehr geringen Gehalten an Alkalien bzw. Erdalkalien. Nach der Klassifikation von FURTAK & LANGGUTH (1967) werden sie vorwiegend als "erdalkalische Wässer mit höherem Alkaligehalt" eingestuft, die Anionencharakteristik streut stark bei niedrigen Absolutgehalten zwischen den Gruppen "überwiegend sulfatisch" bzw. "chloridisch". Mit ihrem sehr geringen Gehalt an Erdalkalien werden sie gemäß WRMG (2007) in den Härtebereich "weich" eingruppiert.

Die Rohwasserproben liegen im schwach sauren pH-Wert-Bereich und überschreiten in der Regel den Grenzwert der TRINKWV (2001). Somit liegt teilweise eine starke Betonaggressivität der Wässer gemäß DIN 4030-1 vor.

Das Grundwasser führt höhere Gehalte an freier Kohlensäure. Es steht nicht im Kalk-Kohlensäure-Gleichgewicht, sondern verhält sich deutlich kalkaggressiv (negativer Calciumkarbonat-Sättigungsindex). Der relativ hohe Gehalt an freier Kohlensäure wird durch den direkten atmosphärischen Eintrag, z. B. über Niederschläge und durch Abbauprozesse organischer Substanzen bei einer generell geringen Pufferkapazität des kristallinen Untergrundes verursacht.

Die oberflächennahen Grundwässer des Kristallins sind bezüglich des Sauerstoffgehalts vorwiegend gesättigt oder zumindest teilgesättigt. Die Werte an gelöstem Eisen liegen nur in Ausnahmefällen über dem Grenzwert der TRINKWV (2001), Mangan ist nur in geringen Spuren nachweisbar, so dass nur eine geringe Gefahr der vorzeitigen Brunnenverockerung bei sachgemäßem Ausbau oder Betrieb gegeben ist. Überschreitungen der Grenzwerte der TRINKWV (2001) treten häufiger bei Aluminium auf.

An 24 Grundwasserproben wurden Radonmessungen durchgeführt (vgl. Kap. 4-3). Die Radongehalte schwanken von kleiner Nachweisgrenze bis maximal 395 Bq/l (Medianwert 65 Bq/l). Die Werte für Uran liegen bei maximal 0,2 µg/l. Tab. 4-14: Statistische Auswertung wichtiger Parameter von Grundwasserproben aus dem oberflächennahen Kristallin (Datengrundlage: 42 Rohwasserproben; Probennahmezeitraum: 2000; 2004–2006).

Inhaltsstoffe mit 50%-Quantil	50%	-(10%–90%)-Quantil		
> 5 mg/l:	keine	e Kationen > 5 mg/l	HCO ₃	5,3 (< NG-17,1)
> 1 mg/l:	Si	3,54 (2,17–6,49)	Ca	1,71 (< BG-8,49)
	Na	1,27 (0,73–4,48)		
> 100 µg/l:	Mg	589 (< BG–2180)	К	429 (< BG-1190)
> 10 µg/l:	AI	44,8 (6,6–277)	Sr	22,1 (10,9–53,8)
> 1 µg/l:	Ва	6,3 (2,5–40,1)	Mn	2,3 (0,7–20,8)
	Zn	1,93 (0,53–6,81)	Rb	1,17 (0,39–2,75)
Parameter	50%	-(10%–90%)-Quantil		Bemerkung
Wassertemperatur [°C]:	8,1 (5,4–10,6)		
Elektr. Leitfähigkeit [µS/cm]:	31,3	(20,8–98,9)		
Gesamtmineralisation [mg/l]:	21,9	(10,7–60,5)	sehr geringer bis geringer Mineralstoffgehalt	
Gesamthärte [°dH]:	0,4 (0,1–1,8)		weich (WRMG 2007)
Sättigungsindex:	-5,08	8 (-6,58– -4,08)		kalkaggressiv
Freie Kohlensäure [mg/l]:	13,2	(3,5–26,4)		
pH-Wert:	5,66	(4,91–6,30)		schwach sauer; schwach, z.T. stark Beton angreifend (DIN 4030-1)
Sauerstoffgehalt [mg/l]:	9,7 (7,1–10,9)		
Eisen [mg/l]:	< NG	G (< NG-0,0189)		max. 0,388; Grenzwert ТкілкwV (2001): 0,2 mg/l
Mangan [mg/l]:	0,00	23 (0,0007–0,0208)		max. 0,126; Grenzwert TRINKWV (2001): 0.05 mg/l

Abb. 4-25: Chemische Zusammensetzung der Grundwässer aus dem oberflächennahen Kristallin im Piper-Diagramm mit der klassifikatorischen Teilung nach FURTAK & LANGGUTH (1967).

Abb. 4-26: Chemische Zusammensetzung der Grundwässer aus dem oberflächennahen Kristallin im Stiff-Diagramm (Medianwerte).

4.3 Radon

Radon ist das einzige natürliche radioaktive Gas. Es kommt überall in Gesteinen und Böden, in Wasser und Luft vor und ist unter Normalbedingungen farb-, geruch- und geschmacklos. Mit 9,73 mg/cm³ ist es das mit Abstand schwerste elementare Gas und weitestgehend chemisch inert. Alle Isotope des Radon sind radioaktiv, drei davon kommen in der Natur vor und entstehen als kurzlebige Zwischenprodukte der radioaktiven Zerfallsreihen der Elemente Uran und Thorium durch Zerfall von Radium. Die Halbwertszeiten betragen bei ²²²Rn (Radon) aus der ²³⁸U-Zerfallsreihe 3,82 Tage, bei ²²⁰Rn (Thoron) aus der ²³²Th-Reihe ca. 55 Sekunden und bei ²¹⁹Rn (Actinon) aus der ²³⁵U-Reihe ca. 3,9 Sekunden.

In Gesteinen und Böden wird durch den α-Zerfall von Radium ständig Radon neu gebildet. Als gasförmige und gut wasserlösliche Elemente können sich Radon-Isotope leicht von ihrem Entstehungsort entfernen. Auf dieser Migrationsfähigkeit über den Bodenluft- und Grundwasserpfad beruhen zahlreiche Anwendungen von Radonmessungen in den Geowissenschaften (z. B. KEMSKI et al. 1996, BÖHM & JOHNER 2005). Mit "Radon" ist im Folgenden stets ²²²Rn gemeint, das langlebigste und mit ca. 90 % weitaus häufigste Radon-Isotop.

Die Radon-Aktivitäten im Grundwasser – wie auch in der Bodenluft – hängen maßgeblich von geologischen Faktoren ab. Primär bestimmen die Uran- bzw. Radiumgehalte des Gesteins- und Bodenmaterials die Höhe der Radon-Konzentrationen. Der Zerfall von Radium kann aber nur dann zur Freisetzung (Emanation) von Radon führen, wenn dieser am Rand von Mineralkörnern stattfindet und Radon dadurch in den umgebenden wasser- oder luftgefüllten Porenraum abgegeben werden kann. Diese Freisetzungsrate ist am größten, wenn das Gestein einen hohen Porenanteil aufweist, beispielsweise in stark zerrütteten oder verwitterten Bereichen.

Wegen seiner relativ kurzen Halbwertszeit von 3,8 Tagen kann Radon in langsam fließenden Grundwässern dabei lateral nicht weit transportiert werden. Im großen Maßstab spiegeln Radon-Verteilungsmuster daher unmittelbar Beschaffenheit und Strukturen des Untergrunds wider.

Radonmessungen im Grundwasser erlauben Rückschlüsse auf die Beschaffenheit des Untergrundes, die mit anderen chemischen und physikalischen Methoden nicht zu gewinnen sind. Radon-Aktivitäten bzw. Radon-Verteilungsmuster können bei repräsentativer, über das einfache Screening hinausgehender Beprobung

- zur Unterscheidung von Wässern herangezogen werden, die sich hydrochemisch nicht oder nur schwer auseinanderhalten lassen, insbesondere gering mineralisierte Wässer, wie sie für Kristallingebiete typisch sind,
- eine Unterscheidung von "echtem Grundwasser" und infiltriertem Oberflächenwasser und Interflow und die Abschätzung von Mischungsverhältnissen verschiedener Grundwasserpfade ermöglichen,
- Hinweise auf erhöhte radioaktive Hintergrundwerte in einem bestimmten Gebiet liefern und Bereiche mit erhöhtem Radonpotenzial kennzeichnen,
- auf strukturelle Diskontinuitäten (Störungen, Bereiche intensiver Klüftung oder Zerrüttung) hinweisen, da diese in Gesteinen mit ubiquitären Uran- und Thoriumgehalten auch potenzielle Zonen darstellen, in denen Grundwässer mit erhöhten Radongehalten auftreten.

Radongehalte wurden in allen seit 2002 beprobten Grundwässern der Planungsregion 12 Donau-Wald bestimmt. Zusätzlich wurden an zahlreichen nicht beprobten Quellen des Gebiets Radon-Aktivitäten und Vor-Ort-Parameter gemessen. Insgesamt liegen Radongehalte von 1416 Quellen sowie 309 Brunnen und Grundwassermessstellen der Region vor. Zudem wurden Mehrfachmessungen und Zeitreihen durchgeführt sowie in einem Testgebiet eine vergleichende Aero-Gammaspektrometrie (DIEPOLDER et al. 2009).

Die Bestimmung der Radon-Aktivitätskonzentrationen in Grund- und Quellwässern wurde mit dem Triathler[™] der Firma Hiddex, einem tragbaren Flüssig-Szintillationszähler mit elektronischer Alpha/Beta-Diskriminierung, durchgeführt. Im Routinebetrieb kam dabei das sogenannte Extraktionsverfahren zur Anwendung: 3,5 ml Wasserprobe werden vor Ort in 7 ml Glasfläschchen (Vials) mit vorgelegtem Szintillationscocktail versetzt, das Radon in den wasserunlöslichen Cocktail extrahiert und nach einer Minimumlatenzzeit von 3 Stunden möglichst innerhalb des ersten Radon-Zerfallsintervalls (4 Tage) gemessen. Alle Messwerte sind mittels der Halbwertszeit auf den Zeitpunkt der Probennahme korrigiert. Aus diesem Verfahren resultiert eine Nachweisgrenze von 5,2 Bq/l bei einer Standardmesszeit von 300 s und von 3,6 Bq/l bei 600 s Messzeit. Vergleichsund Mehrfachmessungen sowie Ringversuche ergaben eine Standardabweichung von < 5% für Proben < 30 Bq/l.

Vergleichsmessungen ergaben, dass viele anthropogen veränderte Quellaustritte (Quellfassungen, Drainage-Ausläufe) häufig zu niedrige Radon-Aktivitäten zeigen, da es beim Durchfließen der Rohrsysteme, je nach Durchmesser und Füllgrad, zu einer unterschiedlich starken Radonentgasung kommen kann (DIEPOLDER 2007, PRZYLIBSKI 2007). Bei der Radonbeprobung wurden daher – wo immer möglich – natürliche, ungefasste Quellaustritte bevorzugt. Die Radonproben wurden stets am ersten Grundwasseraustritt gezogen, um die Radonverluste durch die natürliche Entgasung beim Austritt so gering wie möglich zu halten. Wie Reihenmessungen an verschiedenen Quellbächen ergaben, ist selbst bei laminarem Fluss des Quellbachs innerhalb der ersten 20 Meter ein Radonverlust von bis zu 50 %, bei turbulentem Abfluss bis über 95 % festzustellen.

Die in den Grund- und Quellwässern der Planungsregion 12 Donau-Wald gemessenen Radon-Aktivitäten variieren naturgemäß sehr stark (Abb. 4-28). Während in den tertiären Sedimenten der Molasse und den quartären Talfüllungen nur selten 40 Bq/l erreicht werden, zeigen die Grundwässer des Kristallinen Grundgebirges, d.h. Gesteine mit ubiquitären Uran- und Thoriumgehalten, häufig deutlich über 100 Bq/l. Dabei ist zu berücksichtigen, dass insbesondere in den Kristallingebieten aufgrund der dort herrschenden komplexen hydraulischen Verhältnisse (Abb. 2-11) das Quellwasser meist eine Mischung verschiedener Grundwasserpfade darstellt und somit wechselnde Anteile an radonarmem Oberflächenwasser und/oder Interflow enthält. Dadurch sind selbst auf kleinstem Raum erhebliche Variationsbreiten festzustellen, im Extremfall bis Faktor > 16 (32 Bq/l vs. 526 Bq/l in eng benachbarten Quellen). Die zeitliche Entwicklung der Radon-Aktivitäten von drei Quellen im gleichen Gebiet mit hohem primärem Radonhintergrund zeigt nicht nur den unterschiedlich starken Oberflächeneinfluss, der zu einer Verminderung des Radongehalts führt, sondern auch dessen zeitliche Variabilität (Abb. 4-27). Für eine regionale Beurteilung der Radon-Verteilungsmuster sind also immer die in einem bestimmten Gebiet gemessenen Höchstwerte ausschlaggebend.

Abb. 4-27: Zeitliche Variation der Radon-Aktivitäten von drei Quellen in einem Gebiet mit hohem Radonhintergrund (aus DIEPOLDER et al. 2009, modifiziert). Die Quellen (1) und (2) entspringen unmittelbar im Granit-Zersatz, Quelle (3) ist eine Drainage an der Grenze Granit-Zersatz/Fließerde.

In den Graniten und Dioriten des Bayerischen Waldes sind Radon-Aktivitäten > 300 Bq/l weit verbreitet. Die höchsten Werte werden dabei mit bis zu 800 Bq/l im westlichen Teil des Haidel-Plutons, mit bis zu 850 Bq/l im Dreisessel-Pluton und mit bis über 1100 Bq/l im nördlichen Fürstensteiner Pluton und im Weigelsberg-Granit erreicht. Das Radonpotenzial des Bayerischen Waldes ist damit insgesamt niedriger als in den nördlichen Gebieten des ostbayerischen Grundgebirges (insbesondere Fichtelgebirge und Falkensteiner Granit), wo Radon-Aktivitäten bis über 2000 Bq/l gemessen wurden (DIEPOLDER & HEROLD 2007), jedoch deutlich höher als in den Graniten des österreichischen Teils der Böhmischen Masse mit Höchstwerten von 416 Bq/l (DITTO et al. 1999) bzw. 720 Bq/l (SCHUBERT et al. 2010).

Infolge der verstärkten Radon-Emanation in Gesteinen mit hohem Hohlraumanteil zeigen Proben aus dem Kristallinzersatz in der Regel höhere Radon-Aktivitäten als vergleichbare Proben aus Brunnen oder Kluftquellen im unzersetzten Kristallin. Hierdurch sowie wegen der o.g. Oberflächeneinflüsse ergeben sich auch innerhalb von sonst weitgehend homogenen lithologischen Einheiten erhebliche Streubreiten hinsichtlich der gemessenen Radongehalte im Grundwasser: in den Hauzenberger Graniten (n = 29) beispielweise bei einem Mittelwert von 276 Bq/l zwischen 30 und 427 Bq/l und im Fürstensteiner bzw. Saldenburger Granit (n = 20) bei einem Mittel von 387 Bq/l zwischen 46 und 1110 Bq/l. Die Radon-Aktivitäten in Quellen und Brunnen der tertiären Einheiten der Planungsregion 12 Donau-Wald liegen meist unter 30 Bq/l. Nur im Raum Aldersbach–Vilshofen–Pleinting (Forstharter Rücken) und am Rand des Ortenburger Senkungsfeld wurden Werte bis > 50 Bq/l gemessen und belegen damit den Einfluss des überdeckten Kristallins. Gegenüber dem unbeeinflussten Tertiär der Molasse deutlich erhöhte Radongehalte zeigen auch die Grundwässer aus den Tertiärbuchten und den Rittsteiger Schichten, da die für die Grundwasserzirkulation maßgeblichen gröberen Einschaltungen hier überwiegend aus Kristallinbruchstücken geringer Transportweite aufgebaut werden.

Abb. 4-28: Klassifizierte Radon-Aktivitätsmessungen an Grundwasseraufschlüssen in der Planungsregion 12 Donau-Wald vor dem Hintergrund der Verbreitung von sauren bis intermediären Plutoniten und Ganggesteinen sowie der Tertiär-Bedeckung des Kristallins. Das Untersuchungsgebiet der aerogeophysikalischen Befliegung vom Juli 2007 (Abb. 4-29) ist grün umrahmt. Die Radon-Aktivität des Grundwassers zeigt mit keinem der in den Grundwasseranalysen quantifizierten Haupt- und Nebenbestandteile (vgl. Kap. 4.2 und Anhang) eine signifikante, über eine bloße Lithotypen-Zuordnung hinausgehende Korrelation (DIEPOLDER & HEROLD 2007). Selbst zwischen Radon und dessen Mutternuklid Uran oder dem ebenso im spätmagmatisch-hydrothermalen Stadium angereicherten Arsen ergibt sich keine eindeutige Korrelation. Grund hierfür ist neben der Mobilität des Radon vor allem das unterschiedliche Lösungsverhalten von Uran und Radon, insbesondere die Demobilisierung der Radon-Mutternuklide Uran in reduzierendem und Radium in oxidierendem Milieu. Zwar konnten z. B. SCHUBERT et al. (2010) an Grundwässern des oberösterreichischen Mühlviertels aufzeigen, dass der Urangehalt des Untergrunds eine wichtige Einflussgröße für den Radongehalt des Grundwassers ist, großräumig zeigt sich aber beim Vergleich der Uran- und Radonverteilung höchstens eine schwache Korrelation (z. B. SALIH et al. 2002). Dieses Ergebnis erbrachte auch der Vergleich von Radon-Aktivitätsbestimmungen an Grundwasseraufschlüssen mit aeroradiometrischen Messungen in einem 315 km² großen Testgebiet in der Planungsregion 12 Donau-Wald (DIEPOLDER et al. 2009).

Die Messungen der geophysikalischen Befliegung umfassten Elektromagnetik, Magnetik sowie Gamma-Spektroskopie und wurden im Juli 2007 mit einem Messhubschrauber der Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) durchgeführt. Sie dienten zum einen der Verifizierung struktureller Besonderheiten (ROHRMÜLLER et al. 2009) zum anderen dem Versuch, mittels der Verteilung von Radionukliden flächenhafte Aussagen zur Verwitterungsintensität und Zersatzdecken-Mächtigkeit im Kristallinen Grundgebirge, also Gesteinen mit ubiquitären Uran- und Thoriumgehalten, zu ermöglichen.

In verschiedenen Untersuchungen konnte nachgewiesen werden (z. B. BUTT & ZEEGERS 1992, WILFORD et al. 1997), dass die Konzentrationen der Radionuklide in Böden und Regolithen des Kristallinen Grundgebirges von der Verwitterungsintensität abhängen: Da bei Verwitterungsvorgängen durch Infiltration und Perkolation von Wasser Kalium sukzessive "ausgewaschen" wird, Thorium dagegen wegen seiner unlöslichen Ionen in den oberen Bereichen des Regoliths und im Boden relativ angereichert wird, lassen sich aus den ⁴⁰K/Th-Verteilungsmustern Hinweise auf die Mächtigkeit der für die Grundwasserbewegung und -speicherung bedeutsamen Verwitterungsdecke ableiten, wobei hohe ⁴⁰K/Th-Verhältnisse auf eine relativ geringe Verwitterungsintensität hinweisen.

Bei der luftgestützten Radiometrie wird die natürliche Gammastrahlung von Boden und Gestein bis in ca. 0,5 m Tiefe gemessen. Diese beruht im Wesentlichen auf den Radioisotopen von Kalium, Uran und Thorium. Da Uran und Thorium dabei selbst keine Gammateilchen emittieren, erfolgt die Abschätzung der Konzentrationen über die Gammastrahlung ihrer radioaktiven Tochternuklide ²¹⁴Bi (Radium C der Uran-Radium-Reihe) und ²⁰⁸TI (Thorium C" der Thorium-Reihe), wobei angenommen wird, dass zwischen den Elementen Uran bzw. Thorium und ihren Tochterprodukten ein Gleichgewicht herrscht. Die berechneten Konzentrationen werden daher als Äquivalentgehalte Uran (U_{eq}) und Thorium (Th_{eq}) angegeben.

Beim Vergleich der Uran_{eq}-Verteilungsmuster im Boden mit den an Grundwasseraufschlüssen gemessenen Aktivitäten des Uran-Tochternuklids Radon im Untersuchungsgebiet (Abb. 4-29) zeigt sich eine insgesamt nur schwache Korrelation. Bedingt durch unterschiedliche Umlagerungsprozesse in Oberflächennähe, die sehr ungleichmäßige Ausbildung der quartären Deckschichten, das heterogene Verhalten von Uran bei der Verwitterung und Bodenbildung sowie die unterschiedlich starke Verdünnung der Grundwässer durch radonarme Wässer in Oberflächennähe (siehe Abb. 2-11) bilden die Radon-Aktivitäten im Quellwasser nur großräumig auftretende Gesteinseinheiten mit erhöhten Urangehalten ab. Am deutlichsten ist dies im Bereich des Fürstensteiner Granitplutons N Eging und am Fortharter Rücken W Vilshofen, wo sich das Kristalline Grundgebirge durch die

Auerbach □ Hengersberg α Schwanenhöllnach □ kirchen □ Winzer ußernzell Tittling Neukirchen Hofkirchen vorm Wald athsmannsdorf Donau Walchsing 🗆 Vils □ Aidenbach Ortenburg 0 2,5 5km Radon-Aktivität Urangehalt im Boden in Bq/L in ppm 0 - 20 \bigcirc 21 - 50 51 - 100 3,5 4,0 5,0 5,5 4,5 101 - 200 201 - 400 Untersuchungsgebiet der aerogeophysikalischen Befliegung (Juli 2007) > 400

Tertiärbedeckung durchpaust. Ob sich auch die signifikanten Urangehalte des S Vilshofen zwischen Vils und Wolfach gelegenen Granits von Neustift in den Radon-Aktivitäten des Grundwassers abbilden, konnte mangels Grundwasseraufschlüssen nicht nachgewiesen werden.

Abb. 4-29: Vergleich der Uran_{eq}-Werte der Aero-Gammaspektrometrie mit den in Grundwasseraufschlüssen (meist Quellen) gemessenen Radon-Aktivitäten (nach DIEPOLDER et al. 2009).

Radon-Anomalien abseits dieser flächenhaften, petrologisch bedingten Erhöhung der Radon-Konzentrationen deuten auf strukturelle Besonderheiten oder besondere Milieubedingungen. Intensivere Klüftung beispielsweise begünstigt die Radon-Emanation in der Tiefe und erlaubt wegen guter Wasserwegsamkeiten einen beschleunigten Radontransport. Reduzierende Bedingungen, z. B. in Moorwässern, führen durch Ausfällung zu einer sekundären Anreicherung von Radon-Mutternukliden und damit zu lokal erhöhter Radon-Aktivität.

Flächenhafte Aussagen zur Verwitterungsintensität und zur Zersatzdecken-Mächtigkeit im Kristallinen Grundgebirge anhand der bei der aero-gammaspektrometrischen Vermessung gewonnenen ⁴⁰K und Th_{eq}-Werte sind nicht möglich. Die ursprünglichen während der tertiären insitu Verwitterung im Saprolith angelegten Radionuklid-Verteilungsmuster wurden durch periglaziale Umlagerungsprozesse (z. B. Solifluktion, Kryoturbation, Lössbildung) sowie holozäne Bodenverfrachtungen so stark überprägt, dass sie keine plausible Deutung mehr zulassen. Die aerogeophysikalische Befliegung erbrachte jedoch wertvolle Hinweise auf bis dahin unbekannte Strukturelemente (vgl. ROHRMÜLLER et al. 2009).
5 Blatt 1: Klassifikation der hydrogeologischen Einheiten

In Blatt 1 der Hydrogeologischen Karte 1:100 000 der Planungsregion 12 Donau-Wald sind die Lage, Verbreitung und hydrogeologische Klassifikation der an der Oberfläche ausstreichenden hydrogeologischen Einheiten sowie der Deckschichten dargestellt. Eine hydrogeologische Einheit weist in ihrer Beschaffenheit im Rahmen einer festgelegten Bandbreite einheitliche hydraulische und hydrogeochemische Eigenschaften auf (AD-HOC-ARBEITSGRUPPE HYDROGEOLOGIE 1997). Als Deckschicht wird eine oberflächennahe Einheit oberhalb des ersten zusammenhängenden Grundwasserleiters angesehen, die in ihrer Gesamtheit keine nennenswerten Grundwasser-vorkommen beinhaltet (AD-HOC-ARBEITSGRUPPE HYDROGEOLOGIE 2011).

Basierend auf Hohlraumart (Poren, Klüfte, Karsthohlräume) und Durchlässigkeit der Einheiten werden verschiedene Lockergesteins- und Festgesteins-Grundwasserleiter- bzw. -geringleitertypen unterschieden. Die Farbgebung orientiert sich an international üblichen Darstellungen (z. B. in STRUCKMEIER & MARGAT 1995). Die Karte enthält in erster Linie Informationen über grundlegende hydrogeologische Sachverhalte, auf denen unter anderem die Abgrenzung einzelner Grundwasserleiter beruht. Die Farbgebung der Einheiten ist häufig nur als genereller Hinweis auf die potenzielle Grundwasserführung zu werten; z. B. sind isolierte, morphologisch höher liegende Teile der Einheiten in der Regel grundwasserfrei.

Die von Lockergesteinen aufgebauten Poren-Grundwasserleiter sind entsprechend ihrer Durchlässigkeit, Mächtigkeit des grundwassererfüllten Raums und Ergiebigkeit in drei Klassen eingeteilt, die durch blaue Flächenfarben in drei Abstufungen dargestellt sind. Im Wesentlichen handelt es sich in der Region 12 Donau-Wald dabei um die quartären Flusstalfüllungen sowie die Sedimente der Molasse, der Tertiärbuchten und des intrakristallinen Tertiärs.

Die Gesteine des Grundgebirges werden als Kluft-Grundwasserleiter in die drei Klassen Magmatite, Metamorphite und Ultrametamorphite differenziert und in unterschiedlichen roten Farbtönen dargestellt. Das Grundwasser bewegt sich hauptsächlich in Klüften, deren Anteil mit der Tiefe abnimmt. Die Unterscheidung der drei Klassen beruht auf den unterschiedlichen Klüftungsintensitäten (Kluftverhältnisse). Die Magmatite (dunkelrot) sind im Allgemeinen stärker geklüftet und somit durchlässiger als die in weiten Teilen des Grundgebirges auftretenden Metamorphite (hellrot) (siehe Kap. 2). Die Ultrametamorphite zeichnen sich durch stark wechselhafte Klüftungsverhältnisse aus (mittelrot). Die Gesteinseinheiten sind häufig von einer unterschiedlich ausgeprägten, lehmig-sandigen bis sandig-grusigen Zersatzzone (Verwitterungsdecke) variierender Mächtigkeit bedeckt. Die Zersatzzone kann oberflächennah als Lockergestein angesehen werden, weist aber reliktisch vorhandene Kluftsysteme auf und wirkt daher hydraulisch eher wie ein Kluft-Poren-Grundwasserleiter mit geringen bis mittleren Porendurchlässigkeiten sowie wechselnden Durchlässigkeiten entlang der reliktischen Klüfte (RAUM 2002). Mächtigere Zersatzzonen sind in der Karte durch eine Übersignatur gekennzeichnet. Zur Tiefe hin geht die Verwitterungszone über die Zone der Kleinzerklüftung und Auflockerungszone in das unverwitterte Ausgangsgestein über (siehe Abb. 2-11), welches als Kluft-Grundwasserleiter/Grundwassergeringleiter mit sehr geringen bis mäßigen Gebirgsdurchlässigkeiten anzusprechen ist.

Die Kluft-Karst-Grundwasserleiter sind entsprechend ihrer Gebirgsdurchlässigkeiten in zwei Klassen eingeteilt, die in violetten Farbtönen differenziert werden. Die Gebirgsdurchlässigkeit ist hier maßgeblich von den Kluftverhältnissen und der Verkarstungsintensität des Gesteins abhängig. In der Planungsregion 12 Donau-Wald treten an der Oberfläche Gesteine des Jura als Schollen am Donaurandbruch sowie im Ortenburger Senkungsfeld als Kluft-(Karst-)Grundwasserleiter/- geringleiter mit stark variablen Gebirgsdurchlässigkeiten auf und werden entsprechend in einem hellen Violettton dargestellt.

Bei den Kluft-(Poren-)Grundwasserleitern, die ebenfalls in zwei Klassen differenziert werden und durch zwei unterschiedliche grüne Farbtöne dargestellt werden, handelt es sich um überwiegend klastische sedimentäre Gesteinseinheiten, die in unterschiedlichem Umfang Porenhohlräume aufweisen können, deren Gebirgsdurchlässigkeiten jedoch vorwiegend von den Kluftverhältnissen abhängen. Unter die Klasse der Kluft-(Poren-)Grundwasserleiter/Grundwassergeringleiter mit geringen bis mäßigen Gebirgsdurchlässigkeiten fallen die Einheiten der Oberkreide aber auch die Mineralgänge im Kristallinen Grundgebirge, die keine Porenhohlräume aufweisen.

Grundwassergeringleiter sind je nach Gesteinsverfestigung (Fest- bzw. Lockergestein) durch braune bzw. hellbraune Farbtöne gekennzeichnet. In der Planungsregion 12 Donau-Wald finden sich hier die Tektonite des Grundgebirges (Festgestein) und die Limnischen Süßwasserschichten der Molasse (Lockergestein).

Die Deckschichten werden entsprechend ihrer Durchlässigkeit und Mächtigkeit in verschiedene Klassen eingeteilt und mit unterschiedlichen Linienschraffuren gekennzeichnet. In den Teilräumen Tertiär-Hügelland und Fluvioglaziale Schotter der Planungsregion 12 Donau-Wald sind dies überwiegend Löss und Lösslehm sowie Auelehme und Hochflutablagerungen. Im Kristallinen Grundgebirge des Oberpfälzer-Bayerischen Waldes überwiegen Fließerden und polygenetische Talfüllungen.

Zusätzlich zur Klassifizierung der dargestellten hydrogeologischen Einheiten und Deckschichten enthält die Karte auch eine Tabelle mit Angaben zur stratigraphischen Stellung, Gesteinsbeschaffenheit und Mächtigkeit sowie Kurzbeschreibungen der regionalen hydrogeologischen Eigenschaften der betreffenden Einheiten in der Planungsregion 12 Donau-Wald. Dort ist zudem jede hydrogeologische Einheit bzw. Deckschicht mit einer Ziffer versehen. Die Ziffern auf der Karte bezeichnen entsprechend dieser Tabelle die Deckschichten in roten Ziffern und die hydrogeologischen Einheiten in schwarzen Ziffern.

6 Blatt 2: Grundwasserhöhengleichen

Blatt 2 der Hydrogeologischen Karte 1:100 000 der Planungsregion 12 Donau-Wald enthält die Grundwasserhöhengleichen (freie Grundwasseroberfläche bzw. Druckspiegelhöhe) bedeutender Grundwasserleiter in den quartären und tertiären Sedimenten in der Region sowie als Punktdaten die Lage der Stützpunkte für deren Konstruktion. Als Flächendarstellung wurden die hydrogeologischen Einheiten (siehe Blatt 3) zu Grundwasserstockwerken zusammengefasst.

Für die Tertiärbuchten und das Grundgebirge können keine Grundwasserhöhengleichen dargestellt werden, da kein zusammenhängender bzw. ein heterogen gegliederter Grundwasserkörper ohne klar definierte Grundwasseroberfläche vorliegt. Grundwasserhöhengleichen für lokal begrenzte, hangende Grundwasservorkommen wurden für die Planungsregion 12 Donau-Wald ebenfalls nicht erstellt.

Methodik

Grundwasserhöhengleichenpläne wurden für das obere Hauptgrundwasserstockwerk im Tertiär sowie für das tiefere Grundwasserstockwerk der tertiären Ortenburger Schotterabfolge und im Quartär für die Täler der Donau einschließlich des Isarmündungsgebietes, des Inns und der Vils erstellt und basieren auf durchgeführten Grundwasser-Stichtagsmessungen (Tab. 6-1). Wie ein Vergleich mit Daten aus langjährigen Messreihen zeigt, liegen die Stichtagswerte in der Größenordnung des langjährigen Mittelwasserstands. Die Konstruktion der Grundwasserhöhengleichen erfolgte rechnergestützt mit dem Softwarepaket Surfer[®] 8 (GOLDEN SOFTWARE 2002).

Für die Entscheidung, welche Regionalisierungsmethode im Einzelfall zu wählen ist, wurden auf einen Datensatz verschiedene Algorithmen (Kriging mit Variogramm-Analyse, Radial Basis Function, Minimum Curvature, Triangulation) mit variierenden Parametern angewendet und anschließend eine Kreuzvalidierung durchgeführt. Diese ist ein Maß für die Zuverlässigkeit des Modells: je Rechendurchgang wird ein Datenpunkt aus dem Datensatz genommen und anschließend der an seiner Stelle errechnete Wert auf Abweichung vom wahren Messwert kontrolliert. Es wurde dann diejenige Methode ausgewählt, die der Datenqualität und -dichte am meisten gerecht wurde (z. B. keine Anwendung hochwertiger Verfahren auf geringwertige Datensätze) und die die kleinsten Abweichungen in der Kreuzvalidierung zeigte. Die Regionalisierungsmethoden für die jeweiligen Grundwasserhöhengleichen und die zugehörigen Parameter sind Tab. 6-2 zu entnehmen.

In der Karte dargestellt sind des Weiteren die Stützpunkte zur Konstruktion der Grundwasserhöhengleichen wie Brunnen, Grundwassermessstellen sowie Messpunkte an Oberflächengewässern, deren Wasserstände im Rahmen der Stichtagsmessungen ermittelt wurden. Zusätzlich zu den Werten der Stichtagsmessungen wurden für die Grundwasserhöhengleichen des Tertiärs in Bereichen mit geringer Datendichte Ruhewasserspiegelmessungen an Brunnen und Grundwassermessstellen außerhalb des Stichtagszeitraumes bzw. Bohrwasserspiegel von Brunnen, Grundwassermessstellen und Bohrungen aus dem Bodeninformationssystem Bayern (BIS-BY) in die Konstruktion einbezogen. Die zur Konstruktion der Grundwasserhöhengleichen gesetzten Hilfspunkte sind in der Karte nicht enthalten. Die Dichte der dargestellten Stützpunkte gibt Aufschluss über die Aussagesicherheit der dargestellten Grundwasserhöhengleichen.

Quartär

Die Grundwasserfließrichtungen im Quartär des Donautals rechts der Donau weisen in weiten Bereichen nahezu senkrecht zur Donau in überwiegend nordöstliche Richtung. Das Gefälle liegt überwiegend zwischen > 1‰ und < 3‰. Als Vorfluter des Grundwassers fungiert in der Regel die Donau mit den ihr zufließenden Bächen und Gräben sowie Altwasserarmen. Im Bereich des Isarmündungsgebietes werden der Isar, die östlich von Plattling in die Donau mündet, durch Entwässerungsgräben größere Grundwassermengen aus den quartären Schottern zugeführt, andererseits infiltriert die Isar jedoch auch in das Grundwasser ein, so vor allem im Bereich unterstromig von Oberpöring und generell verstärkt bei Hochwasser (WROBEL 1983). Bedingt durch das aufgrund baulicher Hochwasserschutz-Maßnahmen künstlich beeinflusste Potential der Donau besteht zwischen dem Fließgeschehen rechts und links der Donau kein Zusammenhang. Im Bereich SW Straubing sind die Isohypsen aufgrund geringer Datendichte weitgehend vermutet und deshalb in gestrichelter Signatur wiedergegeben.

Die Fließrichtung des Grundwassers im Inntal verläuft großteils parallel zum Inn nach NE. Das Gefälle variiert in großen Bereichen zwischen ca. 1 und 3‰. Hauptvorfluter für das Grundwasser im Quartär des Inntals ist der Inn. In den ausgedeichten Auwäldern läuft das Grundwasser teilweise Entwässerungsgräben zu. An den Geländetiefpunkten sind dort Pumpwerke installiert, die das Wasser dem Inn zuführen. In den oberstromigen Bereichen der Staustufen Egglfing-Obernberg und Schärding-Neuhaus ist der Inn weitgehend abgedichtet. In diesen Abschnitten bilden die begleitenden Abfanggräben den Vorfluter, deren Wasser an Staustufen vorbei in das Unterwasser des Inns geleitet wird. Die bei Neuhaus in den Inn mündende Rott wirkt als Vorfluter und beeinflusst damit die Grundwasserfließrichtung.

Die Grundwasserfließrichtungen in den quartären Talfüllungen von Vils und Rott werden insbesondere an den Talrändern von dem in den Talraum einströmenden Grundwasser aus dem Hauptgrundwasserstockwerk des Tertiärs beeinflusst. Zur Talmitte hin bzw. in Annäherung an die Flüsse sind die Fließrichtungen auf diese gerichtet. Im nördlichen Bereich des Vilstals sind die Isohypsen aufgrund geringer Datendichte weitgehend vermutet und deshalb in gestrichelter Signatur dargestellt.

In den quartären Talfüllungen herrschen überwiegend freie Grundwasserverhältnisse, in den holozänen Talbereichen treten aufgrund der Überdeckung mit bindigen Auensedimenten auch leicht gespannte Grundwasserverhältnisse auf. Die teilweise hydraulisch unabhängigen bzw. hydraulisch nicht vollständig zusammenhängenden Terrassenkörper wurden maßstabsbedingt zusammengefasst. Auf der Hochterrasse und im Bereich der Deckenschotter im Donautal dünnt die Datendichte stark aus und es liegen nur noch lokal genügend Daten vor, um eine gesicherte Aussage zu treffen. Daher konnten teilweise keine Grundwasserhöhengleichen mehr konstruiert werden.

Tertiär, Hauptgrundwasserstockwerk (OSM, OBSM, OMM)

Das Hauptgrundwasserstockwerk in den tertiären Sedimenten in der Planungsregion 12 Donau-Wald wird aus den hydrogeologischen Einheiten der Oberen Süßwassermolasse (OSM), Oberen Brackwasser-/Älteren Oberen Süßwassermolasse (OBSM) und Oberen Meeresmolasse (OMM) aufgebaut und stellt den oberen weiträumig verbreiteten Grundwasserleiter dar. Obwohl ein intensiver fazieller Wechsel von grobklastischen und feinklastischen Sedimenten sowohl in vertikaler als auch horizontaler Richtung vorherrscht, ist großräumig ein hydraulischer Kontakt zwischen den einzelnen Horizonten und somit ein zusammenhängender Grundwasserkörper gegeben. Die Grundwasserverhältnisse sind dabei überwiegend gespannt, wobei die Potentialhöhen dieser Horizonte geringfügig unterschiedlich sind; die dargestellte Grundwasserdruckfläche ist deshalb generalisiert und gibt nur die grundsätzlichen Potentialverhältnisse wieder.

Im Inntal konnten aufgrund unzureichender Daten keine Isohypsen für das tertiäre Hauptgrundwasserstockwerk konstruiert werden; im Randbereich des Donautals sowie im südöstlichen Bereich des Tertiär-Hügellandes sind die Isohypsen für das tertiäre Hauptgrundwasserstockwerk aufgrund geringer Datendichte weitgehend vermutet und deshalb in gestrichelter Signatur dargestellt. Im anschließenden Bereich bis zum Kristallinen Grundgebirge werden keine Höhengleichen mehr dargestellt, da hinreichende Informationen fehlen bzw. aufgrund heterogenen Untergrundaufbaus (zahlreiche Kristallinaufragungen, Störungen, bruchtektonische Zerlegung) nicht mehr von einem zusammenhängenden Grundwasserkörper ausgegangen werden kann.

Im NW des Tertiär-Hügellandes der Planungsregion 12 Donau-Wald sind die Grundwasserfließrichtungen nach Nordosten zur Donau gerichtet, die hier den Hauptvorfluter für das Hauptgrundwasserstockwerk in den Tertiärsedimenten bildet. Teilweise strömt dabei das Grundwasser des tertiären Hauptstockwerks den Tälern der Kleinen Laber und Aitrach zu. Das Grundwasserfließregime im südöstlichen Teil des Tertiär-Hügellandes der Planungsregion 12 Donau-Wald wird im Wesentlichen durch die Vorfluter Isar, Vils, Rott und Inn sowie deren Nebenflüsse und -bäche (Seitentäler) bestimmt.

Tertiär, Ortenburger Schotterabfolge (OBSM)

Aufgrund der hohen Aufschlussdichte durch Brunnen, Grundwassermessstellen und Bohrungen in der Planungsregion 12 Donau-Wald konnte auch für die Ortenburger Schotterabfolge eine Stichtagsmessung durchgeführt und ein Grundwasserhöhengleichenplan erstellt werden.

Über den gesamten nördlich des Forstharter Rückens liegenden Verbreitungsraum des Ortenburger Schotterkörpers gibt es zwei Fließregime. Im NW liegt überwiegend eine N–S-Fließrichtung vor und es zeigt sich eine starke Beeinflussung durch die Trinkwasserbewirtschaftung im Raum Straubing und Plattling mit einem hohen Grundwasserabstrom im Bereich der Absenktrichter auf die Förderzentren hin. Auswertungen von Bohrwasserständen (GEOTECHNISCHES BÜRO/IGwU 2001) aus der Zeit vor Beginn der Grundwasserförderung (späte 1980er Jahre) zeigen, dass das gesamte tiefe Tertiär ursprünglich artesisch gespannt war und die Grundwasserströmung nach Osten und Südosten gerichtet war. Das südöstliche Fließregime liegt außerhalb der Absenkungstrichter und die Grundwasserströmung ist zum Künzinger Fenster hin gerichtet, in dem der Potentialausgleich mit dem Quartär des Donautals stattfindet. Das Grundwasser des im Süden angrenzenden Quartärs des Vilstals ist im Bereich zwischen Galgweis und Walchsing sehr wahrscheinlich (nur bedingt durch Messwerte abgesichert, deshalb Linien gestrichelt dargestellt) hydraulisch an den Ortenburger Schotterkörper angekoppelt. Tab. 6-1: Übersicht der Zeiträume der Stichtagsmessungen (jeweils Mittelwasser) und Zahl der Messpunkte zur Konstruktion der Grundwasserhöhengleichen.

	Zeitraum Stichtagsmessung	Punkte gesamt	davon Hilfspunkte	Punkte in Planungsregion 13 Landshut	Punkte in Planungsregion 12 Donau-Wald
Donau/Isar	0307.05.2004	1565	-	76	1337
Inn	1415.06.2005	822	234	304	227
Vils	0910.11.2005	231	23	145	86
Tertiär	0307.05.2004	1621	249	814	288
Ortenburger Schotterabfolge	0307.05.2004	105	12	1	104

Tab. 6-2: Übersicht der Methoden, Parameter und Anzahl der Stützpunkte zur Konstruktion der Grundwasserhöhengleichen in der Planungsregion 12 Donau-Wald.

Einheit	Zahl Stützpunkte	Methode	Parameter
Quartär Donautal und Isarmündung, Abschnitt DQR_1*	338	Universal Kriging	linearer Trend, sphärisches Modell, Sill = 2.8, Reichweite = 8000 m, Anisotropie: 140°, Faktor 2,3
Quartär Donautal und Isarmündung, Abschnitt DQR_2*	388	Universal Kriging	linearer Trend, sphärisches Modell, Sill = 1.7, Reichweite = 3500, Anisotropie: 40°, Faktor 1.2
Quartär Donautal, Abschnitt DQR_3*	314	Universal Kriging	linearer Trend, sphärisches Modell, Sill = 3.8, Reichweite = 3500, Anisotropie: 160°, Faktor 1.5
Quartär Donautal, Abschnitt DQL_1*	243	Universal Kriging	linearer Trend, sphärisches Modell, Sill = 0.8, Reichweite = 1200, Anisotropie: 30°, Faktor 1.2
Quartär Donautal, Abschnitt DQL_2*	10	Radial Basis Function	Multiquadric, keine Anisotropie
Quartär Donautal, Abschnitt DQL_3*	113	Universal Kriging	linearer Trend, exponentielles Modell, Sill = 0.5, Reichweite = 1400, Anisotropie: 150°, Faktor 2.8
Quartär Donautal, Abschnitt DQL_4*	14	Radial Basis Function	Multiquadric, keine Anisotropie
Quartär Donautal, Abschnitt DQL_5*	41	Radial Basis Function	Multiquadric, Anisotropie: 15°, Faktor 0.9
Quartär Donautal, Abschnitt DQL_6*	42	Radial Basis Function	Multiquadric, Anisotropie: 15°, Faktor 0.7
Quartär Inntal	822	Delaunay- Triangulation mit line- arer Interpolation	-

Einheit	Zahl Stützpunkte	Methode	Parameter
Quartär Vilstal (Ostteil)	231	Universal Kriging	linearer Trend, sphärisches Modell, Sill = 4.4, Reichweite = 3000, Anisotropie: 90°, Faktor 2
Tertiär	1621	Delaunay- Triangulation mit line- arer Interpolation	-
Ortenburger Schotterabfolge	105	Radial Basis Function	Multiquadric, R² = 12.000, Anisotropie: 70°, Faktor 0.9

* Für die Regionalisierung der Grundwasserhöhengleichen musste das Donautal in mehrere, den hydraulischen Verhältnissen entsprechende Abschnitte eingeteilt werden. Die Benennung der Teilbereiche im Donauquartär erfolgte von Südosten (rechts der Donau, DQR_1) im Uhrzeigersinn bis zum Nordosten (links der Donau, DQL_6) - z. B.: DQR_1: Donautal-Quartär rechts der Donau, östlichster Bereich, DQL_1: Donautal-Quartär links der Donau, westlichster Bereich.

7 Blatt 3: Hydrogeologische Grunddaten

Blatt 3 der Hydrogeologischen Karte 1:100000 der Planungsregion 12 Donau-Wald beinhaltet neben der Darstellung der hydrogeologischen Einheiten die Lage der im Bodeninformationssystem Bayern (BIS-BY) des LfU archivierten und für die Bearbeitung hydrogeologisch relevanten Objekte (Brunnen, Grundwassermessstellen, Erkundungsbohrungen und Quellen). Die Klassifizierung der Punktsymbole erfolgte anhand der "ArcInfo-basierten Generallegende für Hydrogeologische Karten – Markerset Hydrogeologie" (DIEPOLDER & SCHMIDBAUER 2000), beispielsweise nach den Kriterien "öffentliche/private Brunnen", "in Betrieb/nicht in Betrieb", "artesisch/nicht artesisch".

Zusätzlich sind Abflussmessstellen an Oberflächengewässern, Klimastationen und die in der Region ausgewiesenen Trinkwasserschutzgebiete dargestellt. Die Informationen zu den dargestellten Abflussmessstellen an Oberflächengewässern stellte die Abteilung 8 "Gewässerkundlicher Dienst" des LfU zur Verfügung. Der Deutsche Wetterdienst lieferte die Lage der in der Karte eingezeichneten Klimastationen.

Geometrien und beschreibende Attribute der ausgewiesenen Trinkwasserschutzgebiete (Stand Juni 2010) lieferte die Abteilung 9 "Grundwasserschutz, Wasserversorgung, Altlasten" des LfU. In der Karte sind die Grenzen der Schutzzone IIIA (einschließlich I und II) und, sofern ausgewiesen, der Zone IIIB dargestellt. Nach dem Stand 2010 festgelegte bzw. im Genehmigungsverfahren befindliche Schutzgebiete sind nicht erfasst. Dies führt dazu, dass bei einigen mittlerweile zur Wasserversorgung genutzten Brunnen die Schutzgebietsabgrenzungen in der Kartendarstellung fehlen können.

8 Blatt 4: Schutzfunktion der Grundwasserüberdeckung

Blatt 4 der Hydrogeologischen Karte 1:100000 der Planungsregion 12 Donau-Wald stellt die Schutzfunktion der Grundwasserüberdeckung dar, der bei der Beurteilung der potentiellen Gefährdung des Grundwassers durch Schadstoffe eine entscheidende Bedeutung zukommt. Unter Grundwasserüberdeckung - gemäß DIN 4049-3 (1994) - wird hier der Boden- und Gesteinskörper über dem oberen zusammenhängenden, i.d. R. weiträumigen Grundwasserstockwerk verstanden, das für Grundwassererschließungen nutzbar gemacht werden kann (Hölting et al. 1995).

Bei der Passage von Sickerwasser durch die Grundwasserüberdeckung können physikalische, chemische und mikrobielle Prozesse - maßgeblich beeinflusst durch die Verweildauer - zu einer Verringerung der Schadstofffracht führen. Die Verweildauer wird, neben der durch die klimatische Wasserbilanz und die Bodeneigenschaften bedingten Sickerwassermenge, durch die petrographische Ausbildung und Mächtigkeit der ungesättigten Zone über der betrachteten Grundwasseroberfläche bestimmt.

Das hier angewandte Bewertungsverfahren basiert auf einer Beurteilung der relativen Reaktionsintensität durch Abschätzung der Sickerwasser-Verweilzeiten unter Berücksichtigung der Kationenaustauschkapazität. Die prinzipielle Vorgehensweise zur Ermittlung der Schutzfunktion der Grundwasserüberdeckung für Karten im Maßstab 1:50 000 erfolgt nach einer Punktebewertung für die Schutzfunktion und ist ausführlich in DIEPOLDER (1995) und HÖLTING et al. (1995) beschrieben. Dort finden sich auch Tabellen mit der Punktebewertung der berücksichtigten Parameter. Hohe Punktzahlen bedeuten eine lange Verweilzeit des Sickerwassers in der Grundwasserüberdeckung und damit eine hohe Schutzfunktion. Die Darstellung der Gesamtschutzfunktion erfolgt in fünf Klassen von "sehr gering" bis "sehr hoch".

Bei der Bewertung der Sickerstrecke wird nur die vertikale Wasserbewegung berücksichtigt, d. h. die Verweildauer der Sickerwässer im Boden bzw. in der ungesättigten Zone bis zum Erreichen der betrachteten Grundwasseroberfläche. Mögliche Abbau- und Sorptionsvorgänge innerhalb des Aquifers gehen nicht in die Bewertung ein.

Die Berechnung des Punktewerts der Schutzfunktion der Grundwasserüberdeckung erfolgt rasterzellenbasiert nach der folgenden Gleichung:

$$S = [B + \sum_{i=1}^{n} G_i \cdot M_i] \cdot W + Q + D$$

- S Gesamtschutzfunktion in Punkten (dimensionsloser Relativwert)
- B Schutzfunktion des Bodens in Punkten (dimensionsloser Relativwert)
- Gi Gesteinsspezifische Schutzfunktion der Einheit i in Punkten (dimensionsloser Relativwert)
- Mi Mächtigkeit der Einheit i in Meter
- W Faktor für die Sickerwasserrate (zwischen 0.25 und 1.75)
- Q Zuschlag für schwebendes Grundwasserstockwerk
- D Zuschlag für artesische Druckverhältnisse im Grundwasserleiter

Die flächenhafte Berechnung der Schutzfunktion nach dem oben beschriebenen Verfahren erfolgte rechnergestützt durch Verschneidung der mit den notwendigen Einzelinformationen belegten Informationsebenen. Diese wurden in Rasterzellen mit x-, y- und z-Koordinaten mit einem äquidistanten 25 m-Gitterlinienabstand und gleichem Koordinaten-Nullpunkt umgewandelt. Mit dem z-Wert, der je nach Thema verschiedene Informationen beinhaltet (z. B. Wert der nutzbaren Feldkapazität, Sickerwasserfaktor, Mächtigkeit der Schicht, Punktzahl), wird der Punktewert für die Schutzfunktion durch Verschneidung gemäß dem oben beschriebenen Algorithmus berechnet. Als letzter Bearbeitungsschritt werden die berechneten numerischen Werte der einzelnen Rasterzellen der jeweiligen Klasse der Schutzfunktion der Grundwasserüberdeckung zugeordnet.

Im Folgenden werden die bewerteten Grundwasserleiter kurz beschrieben sowie die für die Berechnung der Schutzfunktion maßgeblichen Parameter wie Klima, Grundwasserneubildung, Sickerwasserrate, Eigenschaften der Böden, Deckschichten und der tieferen ungesättigten Zone näher erläutert.

8.1 Bewerteter Grundwasserleiter

Die Bewertung der Schutzfunktion der Grundwasserüberdeckung erfolgt für einen Grundwasserleiter bis zu dessen Grundwasseroberfläche bzw. bei gespannten Grundwasserverhältnissen bis zu dessen Deckfläche. Die bewerteten Grundwasserleiter sind auf der Karte der Schutzfunktion der Grundwasserüberdeckung (Blatt 4) in einer Nebenkarte dargestellt.

In den größeren Tälern wurden die quartären Talfüllungen als oberer Grundwasserleiter bewertet. In den Tälern von Donau, Inn und Vils konnten die ermittelten Grundwassergleichenpläne als Bezugsebene für die Ermittlung der Schutzfunktion der Grundwasserüberdeckung verwendet werden. In den übrigen kleineren Tälern, in denen keine Grundwassergleichenpläne vorliegen, bezieht sich die Bewertung der Grundwasserüberdeckung auf das Niveau der Grundwasserhöhengleichen des oberen Grundwasserstockwerks im umgebenden Tertiär bzw. Kristallin.

Im Tertiär-Hügelland im West- und Südwestteil der Planungsregion 12 Donau-Wald kann großräumig ein oberer zusammenhängender Grundwasserkörper in den Einheiten der Oberen Süßwassermolasse (OSM), den Sedimenten der Oberen Brackwasser-/Älteren Oberen Süßwassermolasse (OBSM) und der Oberen Meeresmolasse (OMM) als Hauptgrundwasserstockwerk abgegrenzt werden. Für die Berechnung der Schutzfunktion wurden die ermittelten Grundwasserhöhengleichen dieses Hauptgrundwasserstockwerks in den tertiären Sedimenten verwendet (Kap. 6). Dabei handelt es sich weitgehend um die Darstellung von Druckspiegelhöhen. Die eigentlich für die Berechnung der Schutzfunktion notwendige Grundwasserdeckfläche konnte aufgrund der wechselnden lithologischen Verhältnisse nicht flächendeckend ermittelt werden. Für die Mächtigkeiten der Grundwasserüberdeckung werden somit geringere Werte berechnet, d. h. die ermittelte Schutzfunktion wird dadurch eher geringer eingestuft.

Die Tertiärbuchten und das intrakristalline Tertiär stellen einen Grundwasserleiter von lokaler Bedeutung dar. Eine durchgehende Grundwasseroberfläche kann aufgrund nur lokal durchlässiger Bereiche nicht konstruiert werden. Die Grundwasser führenden Schichten sind bereichsweise von mächtigen, gering durchlässigen Schichtpaketen überdeckt, so dass gespannte Grundwasserverhältnisse vorherrschen. Aufgrund unzureichender Datenlage konnten allerdings die Grundwasservorkommen sowie die zugehörigen Deckflächen nicht abgegrenzt werden. Für die Berechnung der Schutzfunktion wurde deshalb ein theoretischer Grundwassergleichenplan mit Hilfe der Wasserstände von vorhandenen Brunnen sowie Quellaustritten konstruiert. Die Sedimente der Kreide und des Jura (Malm und untergeordnet Dogger) treten an der Oberfläche bzw. oberflächennah als Schollen am Donaurandbruch und als tektonisch zerlegte Vorkommen im Ortenburger Senkungsfeld auf. Aufgrund ihrer teils recht ergiebigen Grundwasservorkommen sind diese für die Trinkwasserversorgung von lokaler Bedeutung. Für die Berechnung der Schutzfunktion wurden jeweils Pauschalwerte für den Flurabstand bzw. die Grundwasserdeckfläche angenommen.

Den größten Teil der Planungsregion 12 Donau-Wald nehmen die Gesteine des Kristallinen Grundgebirges ein, die im Bayerischen Wald zu Tage treten. Für die Berechnung der Schutzfunktion wurde hier ein "theoretisches" zusammenhängendes oberflächennahes Grundwasservorkommen angenommen, dessen Oberfläche auf Grundlage der vorhandenen Quellaustritte und Wasserstände von Brunnen sowie angenommener Flurabstände von bis zu 30 m unter Bergkuppen konstruiert wurde.

8.2 Grundwasserneubildung und Sickerwasserrate

Klimatischer Überblick

Die Planungsregion 12 Donau-Wald liegt im Übergangsbereich zwischen atlantischem und kontinentalem Klima mit zunehmend kontinentalem Einfluss von West nach Ost. Das regionale Klima und die Verteilungen der Temperaturen und der Niederschläge werden dabei maßgeblich durch die in NE–SW-Richtung verlaufenden Naturräume mit den vom relativ flachen Donautal bis hin zum Bayerischen Wald mit Mittelgebirgscharakter ansteigenden Geländehöhen beeinflusst. Der Einflussbereich des Alpenföhns kann bis an die Donau und den Bayerischen Wald heranreichen.

Während im Donautal nur durchschnittliche Niederschlagsmengen unter 750 mm/a gemessen werden, steigen diese östlich der Donau aufgrund des Steigungsregens und vermehrter Gewitterneigung in den Sommermonaten deutlich an und erreichen im Neuburger Wald ca. 950 bis 1100 mm, im Vorderen Bayerischen Wald und auf der Wegscheider Hochfläche ca. 950 bis 1300 mm pro Jahr. In der Regensenke verringert sich der Niederschlag auf Grund der Leelage auf 850 bis 950 mm pro Jahr. Der Hintere Bayerische Wald bildet die östliche Grenze der Planungsregion und erreicht im Arbergebiet Höhen von fast 1500 m. Dort machen sich die stauenden Effekte des Mittelgebirges bei Westwetterlagen und Tiefdruckgebieten aus dem Mittelmeerraum durch Steigungsregen besonders bemerkbar und die Niederschläge steigen bis auf ca. 1500 mm im Jahr an. Der Niederschlagsreichtum und niedrige Temperaturen ergeben im Bayerischen Wald für ein Mittelgebirge verhältnismäßig hohe Schneemengen. Die Hochlagen sind häufig in Wolken gehüllt, in den Gipfellagen kann der Nebelniederschlag bis zu einem Drittel des Gesamtniederschlags ausmachen (BAYERISCHER KLIMAFORSCHUNGSVERBUND 1996).

Grundwasserneubildung

Die Grundwasserneubildung wird gemäß DIN 4049-3 (1994) als "Zugang von infiltriertem Wasser zum Grundwasser" definiert und wird als Grundwasserneubildungsrate in I/(s•km²) bzw. in mm/a angegeben. Sie hängt sowohl von den klimatischen Größen wie Niederschlag und Verdunstung als auch geologischen und bodenphysikalischen Faktoren sowie von der Art der Bodennutzung und der Geländeform ab.

Zur Grundwasserneubildung trägt großräumig vor allem aus Niederschlag gebildetes Sickerwasser bei. Die im Folgenden angegebenen Werte beziehen sich auf die Grundwasserneubildungsraten aus Niederschlägen für einzelne hydrogeologische Einheiten und basieren auf den Berechnungen von NEUMANN & SPRENGER (2009).

Wesentliche Faktoren für die Berechnung waren über eine bayernweite Modellierung des Bodenwasserhaushalts ermittelte mittlere jährliche Abflusshöhen (Gesamtabflüsse), sowie ein rasterbezogen ermittelter Baseflow-Index, der als Reduktionsfaktor auf die Gesamtabflusshöhe die Verluste durch schnelle Abflusskomponenten wie Oberflächenabfluss oder Interflow berücksichtigt.

Eingangsdaten der Bodenwasserhaushaltsmodellierung waren meteorologische Daten (regionalisierte Niederschläge, Temperatur, relative Feuchte, Windgeschwindigkeit, Sonnenscheindauer), Bodendaten der BÜK 1000 (BUNDESANSTALT FÜR GEOWISSENSCHAFTEN UND ROHSTOFFE 1997) (nutzbare Feldkapazität), Landnutzungsdaten, Angaben zur Hangneigung, Höhe und Exposition aus dem digitalen Höhenmodell DGM 25 (BAYERISCHES LANDESAMT FÜR VERMESSUNG UND GEOINFORMA-TION 1985-1990) sowie mittlere Grundwasserflurabstände.

In die Berechnung des Baseflow-Index flossen hydrologische Abflussdaten von Pegeln (Gesamtabfluss, Basisabfluss), Bodendaten der BÜK 1000 (Feldkapazität, nutzbare Feldkapazität des effektiven Wurzelraums), hydrogeologische Daten der HÜK 200 (hydraulische Leitfähigkeit, Transmissivität), Landnutzungsdaten, Daten zur Hangneigung, Höhe und Exposition aus dem digitalen Höhenmodell DGM 25, Angaben zum mittleren Grundwasserflurabstand und der Gewässernetzdichte sowie das Verhältnis Sommer-/Winterniederschlag ein (WAGNER et al. 2009).

Abbildung 8-1 zeigt die mittlere jährliche Grundwasserneubildung aus Niederschlag für den Zeitraum 1971–2000 als Rasterdarstellung in der Auflösung 200 m x 200 m. Die Werte beziehen sich auf den oberen Grundwasserleiter, der über die oberflächennahe ungesättigte Zone gespeist wird (NEUMANN & SPRENGER 2009).

Die Angabe der Grundwasserneubildung aus Niederschlag in mm/a erfolgt in der Tabelle 8-1 sowie in Abbildung 8-2 für zusammengefasste oberflächennahe hydrogeologische Einheiten als Angabe des Medianwertes und der 10%- bzw. 90%-Quantile der Rasterzellenwerte für die jeweiligen Einheiten. Im Grundgebirgsbereich erfolgte eine weitergehende Differenzierung nach Naturräumen.

Abb. 8-1: Mittlere jährliche Grundwasserneubildung aus Niederschlag in der Planungsregion 12 Donau-Wald für den Zeitraum 1971–2000, Rasterauflösung 200 m x 200 m. Tab. 8-1: Niederschlagsverteilung (Quelle: REGNIE-Daten des Deutschen Wetterdienstes für den Zeitraum 1971-2000) und Grundwasserneubildung aus Niederschlag für zusammengefasste oberflächennahe hydrogeologische Einheiten und regional weitergehende Differenzierung nach Naturräumen im Kristallinen Grundgebirge.

Hydrogeologische	Einheit / Naturraum	Niederschlags- summe [mm/a] 1971–2000	Grundwasserr Niederschlag	neubildung	[mm/a] au	
			Anzahl Rasterzellen	10%- Quantil	Median	90%- Quantil
Quartär des Laber-	-/Vilstals	650–750	4986	85	155	215
Quartär des Untere	en Inntals	750–850	3937	125	215	265
Quartär des Donau	utals	700–900	20.756	110	180	265
Obere Süßwasserr	nolasse	650–850	9888	50	140	170
Obere Brackwasse Ältere Obere Süßw	er-/ /assermolasse	800–950	4771	105	175	225
Obere Meeresmola	asse	800–900	6018	85	150	180
	Falkensteiner Vorwald	750–950	1746	55	115	155
Tertiärbuchten	Lallinger Winkel	950–1050	1598	125	170	245
	Passauer Abteiland und Neuburger Wald	850–950	1116	125	185	250
	Falkensteiner Vorwald	750–950	9031	110	180	250
	Lallinger Winkel	950–1100	3475	150	210	270
	Passauer Abteiland und Neuburger Wald	900–1100	26.648	150	220	295
Kristallines Grundaebirae	Vorderer Bayerischer Wald	950–1550	9555	230	335	430
	Regensenke	800–1100	12.037	145	235	315
	Hinterer Bayerischer Wald	1100–1900	20.324	195	290	450
	Wegscheider Hochfläche	1100–1300	6775	240	310	385

Abb. 8-2: Grundwasserneubildung aus Niederschlag für zusammengefasste oberflächennahe hydrogeologische Einheiten mit regional weitergehender Differenzierung nach Naturräumen im Kristallinen Grundgebirge (Median, 10%- und 90%-Quantil).

Das Wertespektrum reicht von < 50 mm/a in den Bereichen der Molasse- und Quartärablagerungen des Donau-Isar-Hügellandes bzw. Isar-Inn-Hügellandes, des westlichen Dungaus und des Falkensteiner Vorwalds bis zu Werten über 450 mm/a im niederschlagsreicheren Vorderen Bayerischen Wald und auf der Wegscheider Hochfläche mit Maximalwerten bis rund 850 mm/a im Hinteren Bayerischen Wald.

Donautal und Tertiär-Hügelland

Das Donautal und das im Westen anschließende Tertiär-Hügelland weisen Niederschlagsmengen unter 750 mm pro Jahr bzw. unter 850 mm pro Jahr auf. Gleichzeitig treten im Donautal und im Isarmündungsgebiet bereichsweise erhöhte Verdunstungsraten durch kapillaren Aufstieg auf. Das Tertiär-Hügelland ist durch überwiegend mittel bis mäßig, im Süden gering durchlässige Lockergesteine gekennzeichnet. Da die bindigen Deckschichten bewirken, dass ein großer Teil des Niederschlags direkt wieder verdunstet, ist die Grundwasserneubildung hier vergleichsweise niedrig.

Kristallines Grundgebirge

Die Verteilung der Grundwasserneubildung im Kristallinen Grundgebirge des Bayerischen Waldes spiegelt sowohl die lokalen Niederschlagsverteilungen als auch regionalgeologische Strukturen wider. Hohe Grundwasserneubildungsraten treten hierdurch vor allem im regenreicheren Vorderen und Hinteren Bayerischen Wald und auf der Wegscheider Hochfläche hervor. Durch den geringen Hohlraumanteil sind die Grundwasservorkommen allerdings nur wenig ergiebig und bleiben überwiegend auf das Kluftsystem der kristallinen Gesteine mit ihren Zersatzzonen sowie auf die Lockergesteine der Talfüllungen beschränkt (WAGNER et al. 2009). Markant tritt die Struktur des bayerischen Pfahls mit einer aufgrund der geringen hydraulischen Durchlässigkeiten niedrigen Grundwasserneubildung hervor.

Modellierung der mittleren jährlichen Sickerwasserrate

Die Sickerwassermenge ist der Anteil des Niederschlags, der aus der durchwurzelten Bodenzone in den Untergrund infiltriert. Sie lässt sich bestimmen, indem die anderen Größen des Wasserhaushalts, nämlich Oberflächenabfluss und Verdunstung mit ihren Komponenten Interzeption, Evaporation und Transpiration ermittelt werden. Die Modellierung der Verdunstung wurde mit dem Einschicht-Bodenwasserhaushaltsmodell GWN–BW (Weiterentwicklung des Modells TRAIN–GWN) durchgeführt, das in ARMBRUSTER (2002) bzw. MORHARD (2009) ausführlich beschrieben ist.

Der auf den Oberflächenabfluss entfallende Niederschlagsanteil wurde mit Hilfe des Curve Number-Verfahrens (USDA-SCS 1972) nach der vom DVWK (1984) veröffentlichten Anleitung abgeschätzt. Die Zuordnung der Böden zu den im Curve Number-Verfahren verwendeten vier hydrologischen Bodentypen-Klassen erfolgte nach der von MARTIN et al. (2004) entwickelten Methode. Dabei werden die Böden zunächst bis in eine Tiefe von 0,5 m horizontweise anhand ihrer nutzbaren Feldkapazität und Luftkapazität klassifiziert; der Boden erhält dann in der Regel die Klasse seines undurchlässigsten Horizonts. Das Curve Number-Verfahren wurde auf die Tagessummen des Niederschlags angewendet und der Niederschlagsinput für das Bodenwasserhaushaltsmodell jeweils um den so abgeschätzten Oberflächenabfluss verringert.

Für die Simulation mit GWN-BW wurden in der Planungsregion 12 Donau-Wald mit Hilfe von Boden- und Landnutzungsattributen 63.450 Einzelflächen auf Vektorbasis ausgewiesen. Die Art der Landnutzung reguliert dabei die Höhe und den jahreszeitlichen Verlauf der Verdunstung, die nutzbare Feldkapazität der Böden bestimmt das Volumen des Bodenwasserspeichers, aus dem Transpiration und Evaporation gespeist werden sowie - gemeinsam mit dem Wassergehalt des Bodens - den Anteil des Sickerwassers am infiltrierten Niederschlag. Kapillarer Aufstieg wurde auf Flächen berücksichtigt, deren Flurabstand geringer als 3 m ist, sofern der Boden Grundwassereinfluss anzeigt.

Tabelle 8-2 listet die für die Bodenwasserhaushaltsmodellierung verwendeten Eingangsdaten und -parameter auf. Die Simulation wurde für den Zeitraum 1970 bis 2000 in Tagesschritten durchgeführt, die Ergebnisse zu Jahressummen aggregiert und der Mittelwert für den 30-Jahres-Zeitraum 1971 bis 2000 gebildet. Da für die Schutzfunktion der Grundwasserüberdeckung in erster Linie der Wassertransport von der Oberfläche zum Grundwasser wesentlich ist, wurde in der Berechnung der Sickerwasserrate der evtl. auftretende kapillare Aufstieg nicht berücksichtigt.

Datentyp	Bezeichnung	Parameter	Differenzierung	Herkunft
	Regionalisierte Niederschläge (REGNIE)	Niederschlag, unkorrigiert	1 km-Raster, Tagesschritte	DWD
Meteorologische Eingangsdaten	Stationsdaten	Temperatur, relative Feuchte, Windgeschwindigkeit, Globalstrahlung, Sonnenscheindauer	Zeitreihen, Tagesschritte	DWD
	Übersichtsbodenkarten, Referenzprofile	Nutzbare Feldkapazität nach Bodenkundlicher Kartieranleitung 5.Auflage berechnet	Vektorflächen Maßstab 1:25000	LfU
flächenhafte	Landnutzung CORINE	Nutzungsklassen	Vektorflächen	UBA
Eingangsdaten	Digitales Geländemodell	Hangneigung, Höhe, Exposition	25 m-Raster	LVG
	GwFlurabstand	mittlerer Grundwasserflurabstand	25 m-Raster	LfU

Tab. 8-2: Eingangsdaten und -parameter der Bodenwasserhaushaltsmodellierung.

DWD: Deutscher Wetterdienst LfU: Bayerisches Landesamt für Umwelt UBA: Umweltbundesamt LVG: Bayerisches Landesamt für Vermessung und Geoinformation

8.3 Bewertung der Böden, Deckschichten und tieferen ungesättigten Zone

Bewertung der Böden

In der Planungsregion 12 Donau-Wald treffen nach der Standortkundlichen Landschaftsgliederung von Bayern (WITTMANN 1991) das Tertiär-Hügelland mit seinen zahlreichen Teillandschaften wie Niederbayerisches Tertiär-Hügelland und Unteres Rottal, Neuburger Wald, Dungau, Regensburg-Straubinger Donauau, Unteres Isartal, Unteres Inntal, und der Bayerische Wald mit seinen Teillandschaften verschaften Vorderer und Innerer Bayerischer Wald zusammen.

Nachfolgend wird ein Überblick über die für diese Teillandschaften charakteristischen und in der Fläche bedeutsamen Bodeneinheiten gegeben. Die Grundlage hierfür ist die Übersichtsbodenkartierung im Maßstab 1:25000, welche innerhalb der Planungsregion 12 Donau-Wald in den Jahren 1995 bis 2004 durchgeführt wurde.

Die Bewertung der Schutzfunktion des Bodens erfolgt über die Bestimmung seines Wasserspeichervermögens, d.h. der nutzbaren Feldkapazität (nFK) pauschal bis 1 m Tiefe. Dies ist die Summe der nFK aller Bodenhorizonte bis 1 m unter Geländeoberfläche. Bei Bodenentwicklungen von mehr als 1 m bleiben diese tieferen Bodenhorizonte unberücksichtigt und werden der tieferen ungesättigten Zone zugeschlagen. Die nFK eines Horizontes stammt aus bodenphysikalischen Analysen. Liegen keine Analysenwerte vor, lässt sich die nutzbare Feldkapazität nach der Bodenkundlichen Kartieranleitung KA5 (AG BODEN 2005) aus der Bodenart, der Lagerungsdichte und dem Anteil organischer Substanz abschätzen. Die so ermittelte gesamte nFK wird in 50 mm-Intervallen klassifiziert und Punktzahlen zugeordnet. Die Punktwerte dienen der späteren Verrechnung mit der Bewertung des tieferen ungesättigten Untergrundes und sind aus der Tabelle 47 der Bodenkundlichen Kartieranleitung KA3 (AG BODENKUNDE 1982) abgeleitet. Dieses Verfahren nach der KA3 wurde, trotz der Fortschreibung der Bodenkundlichen Kartieranleitung, aus Gründen der Vergleichbarkeit in den unterschiedlichen Planungsregionen, beibehalten:

Tab. 8-3: Bewertung der Böden nach der nutzbaren Feldkapazität nach Tabelle 47 KA3 (AG BODENKUNDE 1982).

Klassenbezeichnung Schutzfunktion	∑ nFK bis 1m Tiefe	Punktzahl	Kennwert
kaum verlagerungsgefährdet	> 250 mm	750	I
gering verlagerungsgefährdet	> 200 – 250 mm	500	II
weniger verlagerungsgefährdet	> 150 – 200 mm	250	III
verlagerungsgefährdet	> 100 – 150 mm	125	IV
stark verlagerungsgefährdet	> 50 – 100 mm	50	V
sehr stark verlagerungsgefährdet	≤ 50 mm	10	VI

Grundwassernahe Böden bilden bei dieser Bewertung eine Ausnahme, da sie trotz oft hoher nFK-Werte wegen geringen Flurabstandes zu den verlagerungssensiblen Bereichen gehören. Deshalb wird bei der nachfolgenden Bewertung der Schutzfunktion diese Besonderheit mit dem Zusatz "sensibel" hervorgehoben.

Böden im Tertiär-Hügelland					
Standortkundliche Landschaftseinheit nach WITTMANN (1991)	Hauptbodentyp	eingeschlossene Böden	Reliefposition/ Verbreitung	Bodenart	Schutz- funktion
Niederbayerisches Tertiär- Hügelland (NBTH) umfasst:	Parabraunerde und Braunerde aus Lösslehm über karbonatreichem Löss		Flusstäler	schluffiger Lehm	≡
NBTH lösslehmreich, warm: flache Osthänge (leeseitig) mit	Braunerde aus Lösslehm	örtlich pseudo- vergleyt	weit verbreitet	schluffiger Lehm	≡
mächtigen Lösslehmdecken; an nach Westen gerichte- ten Steilhängen tritt häufig	Braunerde aus Lösslehm mit Molassematerial	ı	Verzahnungsbereich Lösslehm mit Molasse	sandiger Lehm bis schluffiger Ton	≡
Molassematerial auf NBTH lösslehmbeeinflusst, wärmer:	Braunerde aus Lehmsand bis Sandlehm (Molasse), verbreitet mit Lösslehm	ı	Oberhang Kuppen	lehmig-sandig, gerin- ger Kies- und Lösslehmanteil	≡
deutlich geringere Lösslehmmäch- tigkeiten, zunehmende Sandanteile (Zweischichtprofile: Flugsand über Lösslehm)	Braunerde aus lehmiger Deckschicht über tonigem Molassematerial	örtlich pseudo- vergleyt	mäßig geneigte Hanglagen Verebnungen	schluffige Lehme, san- dige Lehme über leh- migem Ton	≡
NBTH kühler: Bodenbildung vorwiegend aus	Braunerde aus kiesreichem Molassematerial und anderem Tertiärschotter	podsolige Braunerde	exponierte Lagen	kiesiger Sand	≡
Molassematerial	Pseudogley-Braunerde aus Lösslehm	pseudovergleyte Braunerde	wasserzügiges Gelände, Hochflächen	schluffige Lehme	≥

Tab. 8-4: Charakterisierung der Hauptbodentypen der Planungsregion 12 Donau-Wald.

Standortkundliche Landschaftseinheit nach WITTMANN (1991)	Hauptbodentyp	eingeschlossene Böden	Reliefposition/ Verbreitung	Bodenart	Schutz- funktion
Neuburger Wald markiert den Übergang zum	Braunerde aus Lösslehm	örtlich pseudovergleyt	weit verbreitet	schluffige Lehme	≡
Bayerischen Vvald: neben Losslehm und Molassematerial kommt Kristallinzersatz als Boden bilden- des Material hinzu	Pseudogley-Braunerde aus Lösslehm mit sandigem oder sandig-lehmigem Fremdmaterial	,	meist Unterhang	sandige bis schluffige Lehme	2
	Braunerde aus kiesreichem Molassematerial und anderem Tertiärschotter	podsolige Braunerde	exponierte Lagen	kiesiger Sand	≡
	Braunerde aus Lehm (Deckenschotter, Molasse, Lösslehm) über Sand bis Lehm (Molasse)	,	Verzahnungsbereich Deckenschotter mit Molasse	Kies führender Lehm über Kies führendem Sand bis Lehm	≡
	Braunerde, örtlich pseudovergleyt aus Granit- und Gneissubstraten	örtlich pseudovergleyt	mäßig geneigte Unter- bis Mittelhänge der mitt- leren Höhenlage (< 900 m NN)	lehmige, pleisto- zän umgelagerte Substrate, schwach bis mittel skeletthaltig	≡
Dungau syn. Gäuboden, gehört zu den	Pararendzina aus Karbonatschluff (Löss)	1	exponierte Lagen in Lössgebieten	(sandige) Schluffe	≡
Gebieten mit den machtigsten Lössanwehungen (bis zu 8 m Mächtigkeit) in Süddeutschland	Parabraunerde und Braunerde aus Lösslehm über karbonatreichem Löss	T	Flusstäler	schluffiger Lehm	≡
	Braunerde aus Lehmsand bis Sandlehm (Molasse), verbreitet mit Lösslehm	1	Oberhang Kuppen	lehmig-sandig, geringer Kies- und Lösslehmanteil	≡
	Gleye bis Kalkgleye aus unterschiedli- chen Substraten	Gley- Braunerden Moorgleye	Täler	weites Spektrum	II/ sensibel
	Kolluvisol aus lehmigen Abschwemmmassen	örtlich pseudo- vergleyt oder vergleyt	Hangfuß, Mulden und Täler	Schluffe, Übergänge bis Lehm	=

Standortkundliche Landschaftseinheit nach WITTMANN (1991)	Hauptbodentyp	eingeschlossene Böden	Reliefposition/ Verbreitung	Bodenart	Schutz- funktion
Unteres Rottal ist stark zertalt mit deutlich leeseiti-	Braunerde aus Lösslehm mit Molassematerial		Verzahnungsbereich Lösslehm mit Molasse	sandiger Lehm bis schluffiger Ton	≡
gen Losslehmakkumulationen; in der Nähe der Rott dominieren grundwassernahe Bodenentwick-	Braunerde aus lehmiger über schluffi- ger Molasse	ı	Hanglagen	Lehm über Schluff	≡
lungen und Moorbildung	Pseudogley-Braunerde aus Lösslehm	pseudovergleyte Braunerde	wasserzügiges Gelände, Hochflächen	schluffige Lehme	2
	Braunerde aus Schluff bis Schluffton (Lösslehm)		weit verbreitet	schluffige Lehme bis schluffige Tone	≡
	Kolluvisol aus lehmigen Abschwemmmassen	örtlich pseudo- vergleyt oder vergleyt	Hangfuß, Mulden und Täler	Schluffe, Übergänge bis Lehm	=
Unteres Inntal auf jüngeren Terrassen finden sich	Braunerde aus schluffig-lehmigen Abschwemmmassen über Schotter		Schmelzwasserrinnen, Schwemmfächer	Lehm über Kies	2
charakteristisch Rendzinen, fla- che Braunerden, Parabraunerden, auf älteren postglazialen Terrassen aus karbonatreichen Schottern sind	Kolluvisol aus lehmigen Abschwemmmassen	örtlich pseudo- vergleyt oder vergleyt	Hangfuß, Mulden und Täler	Schluffe, Übergänge bis Lehm	=
Braunerden aus entkarbonatisier- ten, lehmig-schluffigen Deckschich- ten typisch; in Flussnähe überwie- gen grundwassernahe Bodenent- wicklungen	Braunerde und Parabraunerde aus Kies führendem Lehm (Deckschicht o. Verwitterungslehm) über Karbonatsand bis -schluffkies (Schotter)	Humusbraun- erde, Humus- parabraunerde	auf ebenen Schotterflächen in Terrassenlandschaften	Kies führende Sande oder Lehme über san- digen bis schluffi- gen Kiesen, kiesigen Sanden	2
	Kalkpaternia aus karbonatreichen sandig-kiesigen Auensedimenten		Flusstäler des Alpenvorlandes	sandige Kiese	III/ sensibel
	Gley aus sandig-lehmigen bis schluffig-lehmigen Talsedimenten	Braunerde-Gley	Täler	Lehme	III/ sensibel

Standortkundliche Landschaftseinheit nach WITTMANN (1991)	Hauptbodentyp	eingeschlossene Böden	Reliefposition/ Verbreitung	Bodenart	Schutz- funktion
Unteres Isartal Auenrendzinen aus Schotter sowie Flussmergel und kalkhaltige Braune	Kalkpaternia aus Feinsand bis Schluff über Auensedimenten	1	Flusstäler des Alpenvorlandes	feinsandig-schluffig über sandig-kiesig	II/ sensibel
Auenboden sind nier die charakte- ristischen Böden; das Spektrum der Flusssedimente reicht von sandig- kiesig bis lehmig-schluftig, mit allen	Gley-Kalkpaternia aus Auensedimenten mit weitem Bodenartenspektrum	Auengley	Flusstäler des Alpenvorlandes	Kiese, Schluffe, Tone	II/ sensibel
Übergängen	kalkhaltiger Auengley aus Auensedimenten	I	alte Flussschlingen	weites Spektrum	l/ sensibel
	Pararendzina aus Flussmergel über karbonatreichem Schotter	•	Flusstäler, postglaziale Terrassen	weites Spektrum	>
Regensburg-Straubinger- Donauau Auenrendzinen aus Schotter sowie Flussmergel und kalkhalti-	Gley-Pararendzina aus Flussmergel über karbonatreichem Schotter; oder aus karbonathaltigen Tal- und Bachsedimenten	Pararendzina- Gley	Flusstäler im Alpenvorland; Donautal; Talränder	schluffig-tonige Lehme (über Schottern)	l/ sensibel
ge Braune Auenböden sınd die mar- kanten Bodeneinheiten; Auengleye, Gleye, Anmoorgleye fügen sich im	Pararendzina aus Flussmergel über karbonatreichem Schotter	1	Flusstäler; postglaziale Terrassen	weites Spektrum	>
engen Wechsel ein; Karbonat- und Skelettgehalt variieren entspre- chend dem Einzugsgebiet der je- weilinen Vorfiluter	Gley-Braunerde aus Lehmsand bis Lehm (Talsediment) im Untergrund karbonathaltig	,	Tallagen	Lehme; auch Kiese im Untergrund möglich	II/ sensibel
	Kalkanmoorgley aus Flussmergel über karbonatreichem Schotter		breite Täler der Alpenvorlandflüsse; Donautal; Talrandbereiche	Schluff bis Lehm über Kies	III/ sensibel
	Kalkvega aus Karbonatschutt	ı	Donautal	Schluffe; Sande	II/ sensibel
	kalkhaltiger Auengley aus Auensediment	1	alte Flussschlingen	weites Spektrum	l/ sensibel

Bayerisches Landesamt für Umwelt 2011

Schutz- funktion	2	=	>	=	2
Bodenart	schluffige Lehme	lehmige Sande, Sand	Lehm, Sand, skelett- reich	Lehm	Lehme, Schluffe, teil- weise grusig oder kie- sig
Reliefposition/ Verbreitung	kleinflächig in wasserzü- gigen Geländepositionen, auf Hochflächen mit ge- ringem Wasserabzug	vorwiegend Mittelhänge	weit verbreitet auf Kuppen- und Hanglagen	mäßig geneigte Unter- bis Mittelhänge	Täler, Mulden
eingeschlossene Böden	pseudovergleyte Braunerde		Podsol- Braunerde, pseudovergleyte Braunerde	,	Gley- Braunerden, Anmoorgleye,
Hauptbodentyp	Pseudogley-Braunerde aus Lösslehm	Braunerde aus Skelett führendem (Kryo-) Sand bis Grussand von Graniten oder Gneisen mit geringen (Löss)lehmanteilen	Braunerde aus (Kryo-)Sand bis Sandgrus von Graniten und Gneisen	Braunerde aus (Kryo-)Lehm unter- schiedlicher Herkunft (Lösslehm, Granite, Gneise)	Gleye aus lehmigen bis schluffigen Talsedimenten
Standortkundliche Landschaftseinheit nach WITTMANN (1991)	Falkensteiner Vorwald Boden bildend wirken hauptsäch- lich Verwitterungssubstrate von Graniten und Gneisen, welche	naurig pieistozan umgelagert sind; hinzu kommt örtlich Lösslehmeinfluss			

Böden im Bayerischen Wald

Standortkundliche Landschaftseinheit nach WITTMANN (1991)	Hauptbodentyp	eingeschlossene Böden	Reliefposition/ Verbreitung	Bodenart	Schutz- funktion
Östlicher Vorderer Bayerischer Wald Boden bildend wirken hauptsäch- lich Verwitterungssubstrate von	Pseudogley-Braunerde aus Lösslehm	pseudovergleyte Braunerde	kleinflächig in wasserzü- gigen Geländepositionen, auf Hochflächen mit ge- ringem Wasserabzug	schluffige Lehme	2
Graniten und Gneisen; sie sind teil- weise tertiär überprägt und häufig pleistozän umgelagert; örtlich tritt Tertiär zu Tage, meist an ausgesetzten Geländepositionen	Braunerde aus Skelett führendem (Kryo-) Sand bis Grussand von Graniten oder Gneisen mit geringen (Löss)lehmanteilen		vorwiegend Mittelhänge	lehmige Sande, Sand	≡
triftt man auf kiesreiches Molassematerial und andere Tertiärschotter; Lösslehmeinfluss ist gering; in Tälern dominiert grundwassernahe	Braunerde-Pseudogley aus Skelett führendem Kryolehm von Granit- und Gneissubstraten mit unterschiedlichen Anteilen von Tertiärton und/oder Lösslehm	Pseudogley- Braunerde	wellige Altflächen bis ca. 450 m NN	Lehm bis Ton	=
	Braunerde-Pseudogley aus lehmiger Überdeckung über lehmigem bis toni- gem Molassematerial	Pseudogley	hauptsächlich in ebenem Gelände	Lehm über Lehm bis Ton	2
	Braunerden, aus stark bis extrem steinig-grusigen, lehmig-sandigen Substraten von Graniten und Gneisen	Ranker und Regosole	steile Talhänge	Grussand bis Grus	≥
	Braunerde aus (Kryo-) Sandschutt bis Sandgrus (Granit oder Gneis)	Podsol- Braunerde	Kuppen- und Hangbe- reiche mittlerer Höhen- lage (ca. 500-900 m NN)	Lehm, Sand, skelett- reich	>
	Braunerde aus (Kryo-)Lehm unter- schiedlicher Herkunft (Lösslehm, Granite, Gneise)	,	mäßig geneigte Unter- bis Mittelhänge	Lehm	=
	Gleye aus lehmigen bis schluffigen Talsedimenten	Gley- Braunerden, Anmoorgleye, Pseudogleye	Täler, Mulden	Lehme, Schluffe, teil- weise grusig oder kie- sig	2
	Gley aus sandig-lehmigen bis schluffig-lehmigen Talsedimenten	Braunerde-Gley	rezente Täler	Lehme bis Schluffe, Skelett führend	≡

Schutz- funktion	≡	l/ sensibel	≥	≥	≥	>	≡
Bodenart	Lehm, Sand, skelettreich	weites Spektrum	Lehme und Schluffe teils grusig, kiesig	Lehm, Sand	Lehm, Sand	Lehm, Sand, skelettreich	lehmige Sande, Sand
Reliefposition/ Verbreitung	Plateaulagen und flache Hangmulden	Mulden und Senken	Täler und Mulden	Obere Hanglagen	Gipfel- und Plateaulagen	Kuppen- und Hangbe- reiche mittlerer Höhen- lage (ca. 500-900 m NN)	vorwiegend Mittelhänge
eingeschlossene Böden	Übergangs- niedermoore, Podsole	I	Gley- Braunerden bis Anmoorgleye	I	Podsol, Podsol- Braunerde	Podsol- Braunerde	
Hauptbodentyp	Bodenkomplex der Anmoorgleye und Pseudogleye aus (Kryo-) Sandschutt über Sandschutt bis Sandgrus	(Übergangs-)niedermoore über kristallinen Substraten	Gleye aus lehmigen bis schluffigen Talsedimenten	Lockerbraunerde (podsolig, humus- reich) aus (Kryo-) Sandschutt	Braunerde-Podsol aus (Kryo-) Sandschutt über Sandgrus bis Sandschutt	Braunerde aus (Kryo-) Sandschutt bis Sandgrus (Granit oder Gneis)	Braunerde aus Skelett führendem (Kryo-)Sand bis Grussand von Graniten oder Gneisen mit geringen (Löss)lehmanteilen
tandortkundliche andschaftseinheit ach WirTMANN (1991) Inerer Bayerischer Wald oden bildend sind kristalline erwitterungssubstrate, die häu- g pleistozän umgelagert und im intergrund verfestigt sind; tilich kommt Lösslehmbeteiligung nzu; ble Niederschläge und niedere abung zahlreicher Moore; auch leye und Anmoorgleye sind häufig r							

Bewertung der Deckschichten

Bei den Deckschichten in der Planungsregion 12 Donau-Wald handelt es sich durchgehend um Lockergesteine. Die Bewertung erfolgte anhand der abgeschätzten mittleren Korngrößenverteilungen. Diese wurden aufgrund von Bohrprofilbeschreibungen, Literaturangaben und Geländebeobachtungen ermittelt. Dementsprechend wurde den Deckschichten ein nach den Tabellen in DIEPOLDER (1995) bzw. HÖLTING et al. (1995) aus der Lithologie abgeleiteter Punktwert pro Meter Mächtigkeit zugewiesen.

Zur Berechnung der Schutzfunktion der Deckschichten wurden an jedem Rasterpunkt jeweils die Punktewerte mit den Mächtigkeiten der Deckschichten und dem Sickerwasserfaktor multipliziert. Zur Bestimmung der Deckschichtenmächtigkeiten lagen zum Teil nur lückenhafte Bohrdaten vor. In diesen Bereichen basiert die Berechnung auf abgeschätzten Pauschalwerten. Angaben zur lithologischen Ausbildung, Mächtigkeit, Durchlässigkeit und zum Filtervermögen sowie die Punktwerte pro Meter Mächtigkeit der jeweiligen Deckschichten sind in Tabelle 8-5 aufgelistet.

Bewertung der tieferen ungesättigten Zone

Die tiefere ungesättigte Zone bezeichnet den grundwasserfreien Anteil des bewerteten Grundwasserleiters. In Tabelle 8-6 sind die jeweils für die Berechnung der Schutzfunktion der Grundwasserüberdeckung verwendeten Punktwerte pro Meter Mächtigkeit der hydrogeologischen Einheiten sowie Angaben zum Filtervermögen dargestellt.

Legende zu Tabelle 8.5 und 8.6:

überwiegend hohes Filtervermögen

überwiegend mittleres Filtervermögen

0
The second secon
~
\leq
1
Ĵ
ß
Z
S
-
0
۰ ۵
2
S
0
g
0
<u>_</u>
<u>_</u>
0
F
.=
C
ō
Ĕ.
$\overline{\mathbf{x}}$
C
n
Ę.
4
Ē
Ā
Ö
õ
5
<u>_</u>
0
0
Ĕ
5
Ę
2
^o
ă
2
Ð
m
<u>e</u> .
0
<u> </u>
:5
÷
ā
Ě
5
.0
Ö
S
×
Ö
Φ
0
Ť
σ
Ľ
Φ
Š
ω.
ž
ш
σ
Ē
n
-
0
2
βſ
eibu
Ireibu
hreibu
chreibu
schreibu
seschreibu
Beschreibu
: Beschreibu
5: Beschreibu
3-5: Beschreibu
8-5: Beschreibu
). 8-5: Beschreibu
tb. 8-5: Beschreibu
ab. 8-5: Beschreibu

Legendeneinheit	Lithologie, Mächtigkeit	Vorkommen	Durchlässigkeit und Filtervermögen	Punkte/ Meter
QUARTÄR				
Moor, Anmoor	Anmoor-Moor, Torf, durchsetzt mit Holz, Sand und Lehm, oberflächennah häufig Iehmig entwickelt; Mächtigkeiten i.d.R. bis 2 m, max. bis 6 m	Hoch- und Übergangsmoore meist in Hochlagen des ostbayerischen Grenzgebietes des Bayerischen Waldes, Nieder- und Anmoore im Einflussbereich von Flüssen und Bächen, Torflagerstätten entstanden in vernässten Tallagen	geringe Durchlässigkeit, jedoch hohes Wasserspeichervermögen; sehr hohes Filtervermögen bei ge- ringer Wasserwegsamkeit	400
Polygenetische Talfüllungen und Schwemmfächer	wechselnde Zusammensetzung von Sand und Kies, mit wechselnden Ton-Schluff- Gehalten, teilweise mit Steinen und Blöcken (abhängig vom Einzugsgebiet), randlich mit Fließerden verzahnt, klei- nere Nebentäler meist schluffige Tone, Lehme und Sande, z. T. mit Gesteinsschutt, Schwemmfächer grobklastisch und unsor- tiert; Mächtigkeiten <1 bis 5 m	in Tallagen der gesamten Planungs- region, Schwemmfächer im Talbereich großer Flüsse	wechselnde, oft geringe bis mä- ßige Porendurchlässigkeiten (k _r - Wert 10 ⁻⁸ bis 10 ⁻⁴ m/s); gerin- ges bis mäßiges Filtervermögen, bei höherem Feinkornanteil und/oder Organik-Anteil hohes Filtervermögen	60-140
Auen- und Hoch- flutablagerungen	Schluff und Ton, teilweise sandig, lokal mit organischen Anteilen; Mächtigkeiten i.d.R. bis 5 m	in Tälern und Nebentälern der großen Flüsse Donau, Vils, Rott, Inn, Isar, Kleine Laber	sehr geringe bis mäßige Poren- durchlässigkeiten, im Isar-, Inn- und Donautal höher als im Rott- und Vilstal sowie im Tal der Kleinen Laber (kr-Wert 10 ⁻⁸ bis 10 ⁻⁴ m/s); hohes bis sehr hohes Filtervermögen	180
Flussschotter und -sande (hochlie- gende Schotter, Terrassen-Reste)	Kies, schluffig bis sandig, Sand; Mächtigkeiten i.d.R. bis 5 m	in der gesamten Planungsregion auf isolierten Hochlagen	mittlere bis hohe Porendurch- lässigkeiten (k _r -Wert 10 ⁻⁴ bis 10 ⁻³ m/s); sehr geringes bis gerin- ges Filtervermögen, bei höheren Schluffanteilen auch höher	10

Punkte/ Meter	sn E-10 tlere Wert tr ge- ängig	160	25	urch- m/s); s nige	aiten 160 n orn- lend erei- teils mige
Durchlässigkeit und Filtervermögen	Blockschutt: hohe bis sehr hohe Porendurchlässigkeite (k _f -Wert >10° m/s), Hangschutt: mäßige bis mit Porendurchlässigkeiten (k _f ¹ 10 ⁻⁵ bis 10° ³ m/s); insgesan ringes Filtervermögen, abhi vom Feinkornanteil	sehr geringe bis geringe Porendurchlässigkeiten (k _r -Wert < 10 ⁻⁵ m/s); vorwie gend hohes bis sehr hohes Filtervermögen	geringe bis mäßige Porendurchlässigkeiten (k _r -Wert 10 ⁻⁶ bis 10 ⁻⁴ m/s); geringes Filtervermögen	geringe bis mäßige Porend lässigkeiten (k _r -Wert < 10 ⁻⁵ i. d. R. hohes bis sehr hohe: Filtervermögen, abhängig v Feinkornanteil; oft kleinräur Grundwasserspeicher	geringe Porendurchlässigke (k _f -Wert 10 ⁻⁷ bis 10 ⁻⁵ m/s), i Bereichen fehlenden Feink anteils auch höher; vorwieg hohes Filtervermögen, in B chen fehlenden Feinkornan auch geringer, dort kleinräu Grundwassenvorkommen
Vorkommen	überwiegend an steilen Hanglagen des Kristallinen Grundgebirges	auf Hochflächen sowie Hanglagen des Tertiär-Hügellandes, auf den breiten Hochterrassenflächen des Donautals (Gäuboden) sowie am südwestlichen Rand des Kristallinen Grundgebirges am Übergang zum Dungau	am Hangfuß von Terrassen des Donautals sowie vereinzelt im Tertiär- Hügelland und Kristallinen Grundge- birge an Hanglagen zum Donautal hin	überwiegend an Hanglagen des Kristallinen Grundgebirges	im nordöstlichen Bereich des Kristallinen Grundgebirges in den Hochlagen über 800 m NN des Bayerischen Waldes
Lithologie, Mächtigkeit	Kies, Steine, sandig-grusig, z.T. mit Blöcken, komponentengestützter Gesteins- schutt, lehmig-sandig, Blöcke über graniti- schem Ausgangsgestein insgesamt größer als über Gneis; Mächtigkeiten bis max. 5 m	Schluff, feinsandig bis Feinsand, schluf- fig, unterschiedlicher Karbonatgehalt, fri- scher kalkhaltiger Löss nur an wenigen Stellen erhalten; Mächtigkeiten i.d.R. bis 5 m, in geschützten Tallagen bis 8 m, im Kristallinen Grundgebirge i.d.R. 1–2 m, Dünen aus Sandlöss bis 4 m	Fein- bis Mittelsand (Quarzsand), gut sortiert, karbonatreich; Mächtigkeiten i.d.R. bis 5 m	umgelagerter Verwitterungsschutt aus sandig-grusigem, steinigem Lehm bis feinsandigem Schluft, z.T. mit Blöcken; Mächtigkeiten i.d.R. bis 4 m, in Mulden bis 10 m	Sand und/oder Grus, schwach lehmig, ze- mentartig verfestigt, in Bereichen fehlen- den Feinkornanteils porös, mit eingelager- ten Steinen und Blöcken, Gefüge blättrig und parallel orientiert, an der Oberfläche stark verlehmt; Mächtigkeiten i.d.R. bis 10 m
Legendeneinheit	Hang- und Blockschutt, Blockmeer, Blockhalde	Löss und Lösslehm	Flugsand	Fließerden oder Lösslehmfließerden, Hanglehm und Abschwemmmassen	verfestigte Fließerden (Firneisgrundschutt)

60		50	170	30	22
mittlere bis hohe Porendurch- lässigkeiten, bei höherem Feinkornanteil auch geringer (k ₁ -Wert 10 ⁻⁴ bis 10 ⁻³ m/s); i. d.R. geringes, bei höherem Feinkorn- anteil auch höheres Filterver- mögen		mäßige bis mittlere Porendurchlässigkeiten (k _f -Wert 10 ⁻⁵ bis 10 ⁻³ m/s); geringes Filtervermögen	sehr geringe bis geringe Porendurchlässigkeiten (k ₁ -Wert 10 ⁻⁹ bis 10 ⁻⁵ m/s); vor- wiegend hohes bis sehr hohes Filtervermögen	mäßige bis mittlere Porendurch- lässigkeiten (k _r -Wert 10 ⁻⁵ bis 10 ⁻³ m/s); geringes Filtervermögen	Kluft-/Porendurchlässigkeit stark wechselnd, abhängig vom Ausgangsgestein; gerin- ges Filtervermögen, bei hohem Lehmanteil auch höheres Filtervermögen
Hochlagen des Hinteren Bayerischen Waldes		vereinzelt innerhalb des Kristallinen Grundgebirges im nordwestlichen und südöstlichen Bereich	vereinzelt innerhalb des Kristallinen Grundgebirges im südöstlichen Bereich	im Tertiär-Hügelland südlich von Vils und Donau südlich Vilshofen	größtenteils in Senken und Verebnungen des Kristallinen Grundgebirges
Schutt, sandig-steinig, mit wechselnden Ton- und Schluffanteilen, z.T. blockreich, meist als Nahmoräne grobklastisch ausge- bildet; Mächtigkeiten i.d.R. bis 5 m		Wechselfolge von Kiesen und Sanden, steinig, untergeordnet tonig-schluffig; wenige Meter mächtig	Schluff und Ton mit Fein- bis Mittelsand- Einschaltungen, mit einzelnen Lagen von tonigen Grobsanden bis Feinkiesen sowie dm- bis m-mächtigen Braunkohlelagen und -flözen; Mächtigkeiten wenige Meter	Fein- bis Grobkiese, mittel- bis grobsandig, mit geringen Schluff- und Steinanteilen, kleinräumig unterbrochen von Fein- bis Mittelsandlagen mit wechselnder Geröll- führung, weitgehend karbonatfrei; wenige Meter mächtig	unter tropischen bis suptropischen Bedin- gungen entstandene Verwitterungsdecke aus Kristallingesteinen; schluffig-toniger Sand und Grus mit Verwitterungsrestblö- cken, reliktisch erhaltenes Trennflächen- gefüge, teilweise kaolinisiert, Residualton- bildungen, über Graniten und Dioriten über- wiegend grusig-sandig, über epi- und kata- zonalen Metamorphiten sowie Ultrameta- morphiten eher sandig-lehmig; Mächtigkei- ten i. d. R. 2 bis 5 m, auf Verebnungsflä- chen bis 8 m, teilweise bis max. 60 m, über Granit i. d. R. größer als über Gneis, bei stärkerer Hangneigung geringer mächtig
Moränen	TERTIÄR	Schotter und Sande des intrakristallinen Tertiärs	Feinsedimente des intrakristallinen Tertiärs	Ortenburger Schotterabfolge	Kristalliner Zersatz

Tab. 8-6: Beschreibung und Bewertung der tieferen ungesättigten Zone für die Berechnung der Schutzfunktion in der Planungsregion 12 Donau-Wald.

Legendeneinheit	Filtervermögen	Punkte/ Meter					
QUARTÄR / FLUVIOGLAZIALE SCHOTTER							
Quartär des Donau- und Isartals	sehr geringes Filtervermögen, bei erhöhtem Feinkornanteil auch hohes Filtervermögen	55					
Quartär des Vilstals	geringes Filtervermögen, bei erhöhtem Feinkornanteil auch hohes Filtervermögen	100					
Quartär des Inntals	sehr geringes Filtervermögen, bei erhöhtem Feinkornanteil auch hohes Filtervermögen	40					
Quartär der Täler von Rott, Großer und Kleiner Laber, Aiterach sowie weiterer Nebentäler der Donau, des Inns und der Vils, altpleistozäne Innterrasse	geringes Filtervermögen, bei erhöhtem Feinkornanteil auch hohes Filtervermögen	100					
Quartär der Nebentäler nördlich der Donau	geringes Filtervermögen, bei erhöhtem Feinkornanteil auch hohes Filtervermögen	100					
Quartär der kleineren Nebentäler südlich der Donau (Seitentäler von Donau, Inn und Rott)	mäßiges bis hohes Filtervermögen	150					
Quartär der kleineren Nebentäler nördlich der Donau	mäßiges bis hohes Filtervermögen	150					
polygenetische Talfüllungen, einschl. Schwemmfächer, nördlich der Donau	geringes bis mäßiges Filtervermögen, bei erhöhtem Feinkornanteil hohes Filtervermögen	120					
TERTIÄR-HÜGELLAND							
Obere Süßwassermolasse							
Jüngere Obere Süßwassermolasse (Hangend-, Misch- und Moldanubische Serie)	mäßiges Filtervermögen, bei erhöhtem Feinkornanteil auch hohes Filtervermögen	120					
Quarzrestschotter	geringes bis mäßiges Filtervermögen	60					
Nördliche Vollschotter-Abfolge	geringes Filtervermögen, bei erhöhtem Feinkornanteil auch mäßiges Filtervermögen	60					
Fluviatile Süßwasserschichten (einschl. Hoisberger Abfolge)	geringes Filtervermögen, bei erhöhtem Feinkornanteil auch mäßiges Filtervermögen	90					
Obere Brackwasser-/Ältere Obere Süßwassermolasse							
Limnische Süßwasserschichten	mäßiges bis hohes Filtervermögen	170					
Obere Brackwasser-/Ältere Obere Süßwassermolasse (Obere Brackwassermolasse + Limnische Untere Serie/Limnische Süßwasserschichten)	mäßiges bis hohes Filtervermögen	170					
Ortenburger Schotterabfolge	geringes Filtervermögen	30					
Obere Meeresmolasse							
Glaukonitsande und Blättermergel	mäßiges bis hohes Filtervermögen	240					
Neuhofener Schichten	mäßiges bis hohes Filtervermögen	260					

KREIDE		
Oberkreide (ungegliedert)	sehr geringes bis geringes Filtervermögen	20
JURA		
Jura (ungegliedert; Malm + Dogger)	sehr geringes bis geringes Filtervermögen	5
OBERPFÄLZER-BAYERISCHER WALD		
Schotter und Sande des intrakristallinen Tertiärs	geringes Filtervermögen	50
Sedimente der Tertiärbuchten und Feinsedimente des intrakristallinen Tertiärs (u.a. Rittsteiger Schichten)	hohes Filtervermögen, in sandigen Partien geringes Filtervermögen	170
Mineralgänge	in Zersatzzonen entsprechend den Lehmanteilen	15
Saure bis intermediäre Plutonite und Ganggesteine	geringes bis maßiges Filtervermögen; tiefere Bereiche mit sehr geringem Filtervermögen	
Saure bis intermediäre Metamorphite epi-/mesozonal		
Saure bis intermediäre Metamorphite, katazonal		
Basische Metamorphite		
Ultrametamorphite granitischen Gefüges (Diatexite)		
Tektonite		

8.4 Aussagen der Karte der Schutzfunktion der Grundwasserüberdeckung

Die Karte der Schutzfunktion der Grundwasserüberdeckung stellt entsprechend ihres Übersichtsmaßstabes nur überörtliche Gegebenheiten dar. Für kleinräumige Bewertungen und örtliche Planungen bleiben Spezialuntersuchungen unbedingte Voraussetzung.

Quartär

Im Quartär des Donau-, Vils- und Inntals ist das Grundwasser aufgrund seines geringen Flurabstandes von wenigen Metern und der überwiegend kiesigen Ausbildung der Talfüllungen weitgehend nur sehr gering bis gering geschützt. Eine mittlere bis lokal hohe Schutzfunktion wird auf den Terrassen der Donau im Dungau, der Vils und des Inn erreicht, da dort zusätzlich zu höheren Flurabständen die quartären Sande und Kiese von mächtigeren feinkörnigen Deckschichten, hier hauptsächlich Löss- und Lösslehmablagerungen, überdeckt werden. Gering verlagerungsgefährdete Böden mit hoher nutzbarer Feldkapazität nFK > 250 mm erhöhen die Schutzfunktion ebenfalls. Die Quartärablagerungen in den Nebentälern weisen trotz des dort höheren Feinkornanteils aufgrund der geringen Flurabstände und geringmächtiger oder fehlender Deckschichten nur eine sehr geringe bis geringe Schutzfunktion auf.

Tertiär-Hügelland

Innerhalb der tertiären Lockergesteine der Molasse des Tertiär-Hügellandes ist die Gesamtschutzfunktion aufgrund der vorherrschend hohen Flurabstände überwiegend hoch bis sehr hoch, im Bereich der Täler aufgrund geringer Flurabstände von wenigen Metern sehr gering bis gering. Im Donau-Isar-Hügelland beträgt die Mächtigkeit der grundwasserfreien Bereiche bis 85 m, im Isar-Inn-Hügelland bis über 100 m. In den tertiären Lockergesteinen der Molasse wird bereits bei Flurabständen von 20 m die Schutzfunktionsklasse hoch bis sehr hoch erreicht. Weit verbreitete, bis zu mehrere Meter mächtige feinkörnige Deckschichten wie Löss- und Lösslehm und der Einfluss der hieraus entstandenen Böden mit hoher Speicherfähigkeit (nFK > 250 mm) tragen ebenfalls zu einer hohen Gesamtschutzfunktion bei. Die im Tertiär-Hügelland häufig vorkommenden hangenden Grundwasserstockwerke sowie vor allem im südöstlichen Teil lokal auftretenden artesischen Grundwasserverhältnisse konnten aufgrund unzureichender Datenlage nicht flächig abgegrenzt werden und gingen somit nicht als zusätzlich begünstigender Faktor in die Berechnung der Schutzfunktion der Grundwasserüberdeckung mit ein.

Tertiärbuchten und intrakristallines Tertiär

Im Bereich der Tertiärbuchten und des intrakristallinen Tertiärs liegt eine überwiegend geringe bis mittlere Schutzfunktion der Grundwasserüberdeckung vor. Insgesamt ist die Schutzfunktion innerhalb der Tertiärbuchten aufgrund der dort vorkommenden feinkörnigeren Sedimente höher als in den intrakristallinen Tertiärbecken, wo die Grundwasser überdeckenden Schichten überwiegend aus sandig-kiesigen Gesteinen bestehen. In den Tertiärbuchten im Falkensteiner Vorwald führen niedrige Sickerwasserraten und gering verlagerungsgefährdete Böden zu einer höheren Einstufung der Schutzfunktion.

Jura und Kreide

Die Gesamtschutzfunktion der Grundwasserleiter in den Kreide- und Juravorkommen ist sehr gering bis gering, da die anstehenden, häufig verkarsteten Kalksteine des Jura und die oft entfestigten Quarzsandsteine der Kreide über eine nur sehr geringe bis geringe Filterfunktion verfügen. Nur wo mächtigere Löss- bzw. Lösslehmdecken die Jura- und Kreidegesteine überlagern, wird eine mittlere Schutzfunktion erreicht.

Kristallines Grundgebirge

Im Kristallinen Grundgebirge ist die Gesamtschutzfunktion der Grundwasserüberdeckung aufgrund der vorherrschend geringen Flurabstände und der geringen Filterwirkung der Gesteine meist nur sehr gering bis gering. Mächtigere bindige Deckschichten fehlen weitgehend und auch die Böden mit ihrer skelettreichen Ausbildung tragen kaum zu einer Erhöhung der Schutzfunktion bei. Etwas erhöht wird die Schutzfunktion in Bereichen von Hoch- und Übergangsmooren auf den Hochlagen und Nieder- und Anmooren im Einflussbereich von Flüssen sowie teilweise im Bereich polygenetischer Talfüllungen. Eine mittlere Schutzfunktion wird in Gebieten mit mächtigem kristallinem Zersatz, dann vor allem in Senken und bei mächtigeren Deckschichten, hauptsächlich Fließerden, erreicht. Im Falkensteiner Vorwald und im Passauer Abteiland führen niedrige Sickerwasserraten und gering verlagerungsgefährdete Böden zu einer höheren Einstufung der Schutzfunktion.

9 Blatt 5: Hydrogeologische Profilschnitte

Um die vertikale Abfolge der Grundwasserstockwerke und deren hydrogeologische Eigenschaften zu visualisieren und damit eine räumliche Interpretation der hydrogeologischen Verhältnisse zu ermöglichen, ist dem Kartensatz eine Tafel mit fünf hydrogeologischen Profilschnitten beigefügt. Der Verlauf der Profilschnittlinien ist jeweils auf den Blättern 1 bis 4 der HK100 dargestellt. Da auf eine Projektion von Konstruktionsstützpunkten auf die Profillinie weitgehend verzichtet wurde, weisen die Profillinien mehrere Knickpunkte auf. Profilknicke, die mehr als 30° betragen, sind in den Profilen gesondert ausgewiesen. Die Profillinien reichen teilweise über die Grenzen der Planungsregion 12 Donau-Wald hinaus, da dort Stützpunkte mit wichtigen Informationen einbezogen wurden.

Die Profilschnitte wurden anhand von ausgewählten Bohrungen mit Endteufen zwischen zehn und mehreren hundert Metern konstruiert und sind 10-fach überhöht dargestellt. Als Grundlage zur Darstellung der Geländeoberfläche diente das Digitale Geländemodell (DGM 25) (BAYERISCHES LANDESAMT FÜR VERMESSUNG UND GEOINFORMATION 1985-1990) mit einer Gitterweite von 50 m.

Die Konstruktion der Schichtgrenzen zwischen den Bohraufschlüssen erfolgte unter Berücksichtigung bereits vorhandener geologischer Schnitte und Isolinienpläne (Streichlinien-Karten), Angaben zu Schichtmächtigkeiten, der Ergebnisse der im Rahmen der hydrogeologischen Landesaufnahme in der Planungsregion 13 Landshut durchgeführten 3D-Modellierung (KAINZMAIER et al. 2007), lokal vorhandener geophysikalischer Untersuchungen sowie durch lineare Interpolation zwischen den einzelnen Bohrungen. Alle Profile wurden digital und 3D-Koordinaten-referenziert in einem Geoinformationssystem erstellt (Kus et al. 2006). Die vertikale Darstellung in der Tiefe hängt von der vorhandenen Datenbasis ab, Grenzflächen tieferer Einheiten sind meist nur durch wenige einzelne Tiefbohrungen belegt.

Da das im Untergrund vorhandene Paläorelief der hydrogeologischen Einheiten aufgrund der vorliegenden Datendichte nicht in der entsprechenden Genauigkeit nachgebildet werden konnte, wurden die Schichtgrenzen geglättet dargestellt. Im Kristallinen Grundgebirge liegen kaum Informationen über die Tiefe, z. B. in Form von Bohrungen, vor. Die Darstellung ist deshalb schematisch. Die eingetragenen Lithologiesymbole repräsentieren eine idealisierte Beschreibung der vorherrschenden Gesteinseigenschaften der jeweiligen Einheit bzw. deren Variationsbreite. Maßstabsbedingt und aufgrund unzureichender Datengrundlage ist die Verzahnung unterschiedlich beschaffener Gesteine innerhalb der einzelnen hydrogeologischen Einheiten in den Profilen nicht darstellbar. Deckschichten wie z. B. Lössbedeckungen sind maßstabsbedingt nur bei mächtigerer Ausbildung (ab 10 m) wiedergegeben. Die Zersatzzone wurde im gesamten Kristallinen Grundgebirge schematisch mit einheitlicher Symbolik eingezeichnet, dementsprechend sind keine Aussagen zu tatsächlicher Ausdehnung, Mächtigkeit und Beschaffenheit möglich.

Die bedeutenden bruchtektonischen Strukturelemente im Untergrund der Planungsregion 12 Donau-Wald, wie die Regensburg-Straubinger Senke, der Pockinger Abbruch mit seiner nordwestlichen Fortsetzung, der Donaurandbruch, das Aidenbach-Griesbach-Hoch sowie das Ortenburger Senkungsfeld basieren überwiegend auf den Ergebnissen seismischer Untersuchungen und der 3D-Modellierung in der Planungsregion 13 Landshut (KAINZMAIER et al. 2007). Ihre genaue Lage ist mit Unschärfen behaftet. Kleinere tektonische Strukturen im Untergrund konnten im kartierten Maßstab nicht berücksichtigt werden. Die freie Grundwasseroberfläche bzw. die Grundwasserdruckfläche der Grundwasserstockwerke im Quartär und Tertiär basiert auf den Grundwassergleichenplänen von Blatt 2 der HK100 und wird als blaue durchgezogene bzw. gestrichelte Linie dargestellt. Lokal ist die Grundwasserdruckfläche des im tieferen Untergrund befindlichen Malm-Grundwasserleiters abgebildet. Inwieweit freie oder gespannte Grundwasserverhältnisse herrschen, lässt sich aufgrund der lateralen und vertikalen Verzahnung unterschiedlich durchlässiger Schichten besonders in den tertiären Einheiten für große Bereiche nur grob abschätzen. Im Falle einer Grundwasserdruckfläche beginnen die eingezeichneten durchgezogenen Druckpfeile an der Deckfläche des grundwassererfüllten Körpers. Gestrichelte Druckpfeile deuten mehrere unterschiedliche grundwassererfüllte gespannte Horizonte innerhalb eines Grundwasserstockwerkes an, die durch Bohrungen nachgewiesen wurden, jedoch aufgrund unzureichender Datenlage nicht räumlich abgegrenzt werden konnten. Die Potentialhöhen dieser erbohrten Horizonte sind geringfügig unterschiedlich; die dargestellte Grundwasserdruckfläche ist deshalb generalisiert.

Die Grundwasserführung wird durch unterschiedliche Flächenfarben abgebildet. Die grundwassererfüllten Bereiche (Grundwasserkörper) werden je nach Durchlässigkeiten der Grundwasserleiter in zwei unterschiedlichen Blautönen dargestellt: in dunkelblau Grundwasserkörper in Grundwasserleitern mit höheren Durchlässigkeiten, hellblau Grundwasserkörper in Grundwasserleitern mit geringeren Durchlässigkeiten. Blau schraffierte Flächen kennzeichnen Grundwasserleiter/-geringleiter mit (stark) variablen Durchlässigkeiten bzw. wechselnder Grundwasserführung. Grundwassergeringleiter ohne nennenswerte Grundwasserführung sind gelb eingefärbt. Die weißen Bereiche stellen Grundwasserleiter ohne nennenswerte Grundwasserführung im Bereich der Grundwasserüberdeckung dar.

Die vertikale Ausdehnung der grundwassererfüllten Bereiche in den Molassesedimenten ist bis zur freien Grundwasseroberfläche bzw. bis zur Grundwasserdruckfläche dargestellt. Die innerhalb der einzelnen hydrogeologischen Einheiten immer wieder bereichsweise auftretenden bindigen Grundwasser gering leitenden Schichten sind in der Regel nicht gesondert ausgewiesen, da diese meist nicht räumlich abgegrenzt werden können. Dementsprechend sind dort genaue Aussagen zur Mächtigkeit der grundwassererfüllten Bereiche nicht möglich.

Hangende, lokal begrenzte Grundwasservorkommen sind dargestellt, wenn sie durch Brunnen und Quellen belegt sind. Darüber hinaus sind weitere derartige Vorkommen möglich, die maßstabsbedingt nicht dargestellt werden können bzw. aufgrund ihrer Kleinräumigkeit im Rahmen der hydrogeologischen Landesaufnahme nicht erfasst werden konnten.

Die hydrogeologischen Verhältnisse im Kristallinen Grundgebirge sind in den Profilschnitten entsprechend dem Maßstab stark schematisiert wiedergegeben. In der Zersatzzone und bis zu einer Tiefe von ca. 100 m des Kristallinen Grundgebirges sowie entlang von Störungszonen wurden in blauer Schraffur Bereiche potenzieller Grundwasserführung ausgewiesen (Ausnahme: Tektonite als Grundwassergeringleiter). Über die tatsächliche Verbreitung und Mächtigkeit der Grundwasservorkommen können aufgrund einer fehlenden klar definierten Grundwasseroberfläche sowie einer diffusen nicht genau bestimmbaren Grundwassersohle innerhalb des kristallinen Gesteinsverbandes keine trennscharfen Aussagen getroffen werden. Eine konzeptionelle Darstellung der Grundwasserbewegung und der unterschiedlichen Fließpfade im Kristallin ist in Abbildung 2-11 wiedergegeben.

Literatur

- AD-HOC-ARBEITSGRUPPE HYDROGEOLOGIE [Hrsg.] (1997): Hydrogeologische Kartieranleitung. Geol. Jb., **G2**: 3-157, Hannover (in Kommission: E. Schweizerbart'sche Verlagsbuchhandlung – Nägele u. Obermiller).
- AD-HOC-ARBEITSGRUPPE HYDROGEOLOGIE [Hrsg.] (2011): Fachinformationssystem Hydrogeologie: Standards für ein digitales Kartenwerk – Ergänzung zur Hydrogeologischen Kartieranleitung.
 – Geol. Jb., G13, Hannover (in Kommission: E. Schweizerbart'sche Verlagsbuchhandlung -Nägele u. Obermiller) (im Druck).
- AG BODENKUNDE [Hrsg.] (1982): Bodenkundliche Kartieranleitung. 3. Aufl.: 331 S., Hannover. (in Kommission: E. Schweizerbart'sche Verlagsbuchhandlung - Nägele u. Obermiller).
- AG BODEN [Hrsg.] (2005): Bodenkundliche Kartieranleitung. 5. Aufl.: 438 S., Hannover. (in Kommission: E. Schweizerbart'sche Verlagsbuchhandlung - Nägele u. Obermiller).
- APEL, R. & FAUTH, H. (1977): Hydrogeologische Verhältnisse. In: BAUBERGER, W.: Geologische Karte von Bayern 1:25000, Erläuterungen zum Blatt Nr. 7046 Spiegelau und zum Blatt Nr. 7047 sowie zu den nördlichen Anteilen der Blätter Nr. 7146 Grafenau und Nr. 7147 Freyung Nationalpark Bayerischer Wald: 137–153, München (Bayer. Geol. L.-Amt).
- ARMBRUSTER, V. (2002): Grundwasserneubildung in Baden-Württemberg. Freiburger Schriften zur Hydrologie, **17**: 141 S., Freiburg.
- BAUBERGER, W. & UNGER, H. J. (1984): Geologische Karte von Bayern 1:25000, Erläuterungen zum Blatt Nr. L 7446 Passau. – 175 S., München (Bayer. Geol. L.-Amt).
- BAYERISCHER KLIMAFORSCHUNGSVERBUND [Hrsg.] (1996): Klimaatlas von Bayern. 48 S., München.
- BAYERISCHES LANDESAMT FÜR VERMESSUNG UND GEOINFORMATION [Hrsg.] (1985-1990): Digitales Geländemodell DGM 25, 50 m Gitter. München.
- BAYERISCHES STAATSMINISTERIUM FÜR WIRTSCHAFT, INFRASTRUKTUR, VERKEHR UND TECHNOLOGIE [Hrsg.] (2004): Bayerischer Geothermieatlas. 104 S., Karten-CD, München.
- ВÖHM, C. & JOHNER, H. (2005): Radon in Bodenluft Radonentstehung und -ausbreitung, Permeabilitätsbestimmung in Bodenluft. – Bull. angew. Geol., **10/1**: 3-16, Bern (SFIG).
- BÜTTNER, G., PAMER, R. & WAGNER, B. (2003): Hydrogeologische Raumgliederung von Bayern. GLA-Fachberichte, **20**: 88 S., München (Bayer. Geol. L.-Amt).
- BUNDESANSTALT FÜR GEOWISSENSCHAFTEN UND ROHSTOFFE [Hrsg.] (1997): Digitale Bodenübersichtskarte der BRD (BÜK 1000); Maßstab: 1:1000000; Hannover.
- BUTT, C.R.M. & ZEEGERS, H. [Hrsg.] (1992): Regolith Exploration Geochemistry in Tropical and Subtropical Terrains. Handbook of Exploration Geochemistry, **4**: 607 S., Amsterdam (Elsevier).
- DIEPOLDER, G.W. (1995): Schutzfunktion der Grundwasserüberdeckung. Grundlagen Bewertung Darstellung in Karten. GLA-Fachberichte, **13**: 5-79, München (Bayer. Geol. L.-Amt).

- DIEPOLDER, G.W. (2007): Hydrogeological mapping in the Bavarian und Upper Palatinate Forest State of the art and preliminary results. – In: MARSZAŁEK, H. & CHUDY, K. [eds.]: Hydrogeologia – Selected Problems of the Bohemian Massif and Other Hardrock Terrains in Europe. – Acta Universitatis Wratislaviensis, **3041**: 285-294, Wroclaw (Wydawnictwo Uniwersytetu Wroclawskiego).
- DIEPOLDER, G.W. & HEROLD, H. (2007): Mineral and radon-rich waters in the hardrock terrains of northeastern Bavaria. – In: MARQUES, J.M., CHAMBEL, A. & RIBERO, L. [eds.]: Proceedings of the Symposium on Thermal and Mineral Waters in Hard Rock Terrains. – Lisbon, Portugal, 21.-24. September 2007: 121-130, Aveiro (AIH-GP, International Association of Hydrogeologists – Portuguese Chapter).
- DIEPOLDER, G.W., HEROLD, H., SIEMON, B. & VOSS, W. (2009): Comparison of airborne gamma-Ray spectrometry and groundwater based radon activity measurements – a case study. – 6th Congress on Regional Geological Cartography and Information Systems – Munich, Germany, 9.-12. June 2009, Proceedings I: 307-310 München (Bayer. Landesamt f. Umwelt).
- DIEPOLDER, G.W. & SCHMIDBAUER, S. (2000): An ARC/INFO-based general legend for hydrogeological maps. – Third Congress on Regional Geological Cartography and Information Systems – Munich, Germany, 24.-27. October 2000, Proceedings: 87-88, München (Bayer. Geol. L.-Amt).
- DIN 4030-1 (2008): Beurteilung betonangreifender Wässer, Böden und Gase Teil 1: Grundlagen und Grenzwerte. Deutsches Institut für Normung e.V., Berlin (Beuth).
- DIN 4049-3 (1994): Hydrologie; Begriffe zur quantitativen Hydrologie. Deutsches Institut für Normung e.V., Berlin (Beuth).
- DITTO, M., FIMML, W., KORNER, M. & WEISZ, J. (1999): Radon-222 im Grundwasser. Ein österreichweiter Überblick. – Bericht Bundesanstalt f. Lebensmitteluntersuchung und -forschung, 14 S. (Wien).
- DOBNER, A. (1988): Hydrogeologischer Überblick. In: OTT, W.-D.: Geologische Karte von Bayern 1:25000, Erläuterungen zum Blatt Nr. 7147 Freyung und zum Blatt Nr. 7148 Bischofsreut: 100–106, München (Bayer. Geol. L.-Amt).
- DVWK (1984): Arbeitsanleitung zur Anwendung von Niederschlags-/Abfluss-Modellen in kleinen Einzugsgebieten. – DVWK-Regel 113: 34 S., Hamburg (Paul Parey).
- DVWK (1999): Methoden für die Beschreibung der Grundwasserbeschaffenheit. Schriftenreihe des Deutschen Verbandes für Wasserwirtschaft und Kulturbau e.V., **125**: 113 S., Bonn (Wirtschafts- und Verlagsgesellschaft Gas und Wasser mbH).

EISBACHER, G.H. (1991): Einführung in die Tektonik. – 1. Aufl.: 309 S., Stuttgart (Enke).

- FREEZE, R.A. & CHERRY, J.A. (1979): Groundwater. 1. Aufl.: 604 S., Englewood Cliffs (Prentice Hall).
- FURTAK, H. & LANGGUTH, H.R. (1967): Zur hydrochemischen Kennzeichnung von Grundwässern und Grundwassertypen mittels Kennzahlen. Mem. IAH.-Congress, VII (1965): 89–96, Hannover.
- GALADÍ-ENRÍQUEZ, E. (2006): Analyse hydrogeologisch relevanter Kluft- und Störungsflächen und Spannungsfelder im Fürstensteiner und Hauzenberger Granitpluton. Projektbericht, Bayer. Landesamt für Umwelt, München: 180 S. (unveröff.).
- GALADÍ-ENRÍQUEZ, E. (2011): Geologische Karte von Bayern 1:25000, Erläuterungen zum Blatt 7246 Tittling. – 88 S., Augsburg (Bayer. Landesamt f. Umwelt) (im Druck).
- GEOTECHNISCHES BÜRO/IGWU (2001): Großräumiges Grundwasserströmungsmodell für den Ortenburger Schotter zwischen Straubing und Vilshofen. – Gutachten Geotechnisches Büro Prof. Dr. Schuler und Dr.-Ing. Gödecke, Augsburg und IGwU GmbH Ingenieurbüro für Grundwasser und Umweltfragen, Markt Schwaben (unveröff.).
- GOLDEN SOFTWARE (2002): Surfer[®]8 Contouring and 3D Surface Mapping for Scientists and Engineers User's Guide. 640 S., Golden Software Inc., Golden, Colorado (USA).
- GRIMM, W. D. (1957): Stratigraphische und sedimentpetrographische Untersuchungen des Jungtertiärs im Raume von Passau. – Diss. Ludwig-Maximilians-Universität München: 90 S., München.
- HÖLTING, B. & COLDEWEY, W.G. (2005): Hydrogeologie Einführung in die Allgemeine und Angewandte Hydrogeologie. 326 S., München (Elsevier).
- HÖLTING, B., HAERTLÉ, T., HOHBERGER, K. H., NACHTIGALL, K.H., VILLINGER, E., WEINZIERL, W. & WROBEL, J. P. (1995): Konzept zur Ermittlung der Schutzfunktion der Grundwasserüberdeckung.
 Geol. Jb., C 63: 5-24, Hannover (in Kommission: E. Schweizerbart'sche Verlagsbuchhandlung Nägele u. Obermiller).
- KAINZMAIER, B., THOM, P., WROBEL, M., PUKOWIETZ, C., LISCHEID, G. & PAMER, R. (2007):
 Geowissenschaftliche Landesaufnahme in der Planungsregion 13 Landshut. Erläuterungen zur Hydrogeologischen Karte 1:100000. – 232 S., Augsburg (Bayer. Landesamt f. Umwelt).
- KARRENBERG, H. (1981): Hydrogeologie der nichtverkarstungsfähigen Festgesteine. 1. Aufl.: 284 S., Wien (Springer).
- KEMSKI, J., KLINGEL, R. & SIEHL, A. (1996): Das geogene Radonpotential. In: SIEHL, A. (Hrsg.): Umweltradioaktivität. 179-222, Berlin (Ernst & Sohn).
- KUS, G., PAMER, R. & WAGNER, B. (2006): Digitale Erstellung und Vernetzung (hydro-)geologischer Profilschnitte innerhalb bestehender Datenstrukturen. – Wiss. Mitt. Inst. Geo., **31**: 303-310, Freiberg (Technische Univ. Bergakademie Freiberg, Institut f. Geologie).
- LANGGUTH, H.R. & VOIGT, R. (2004): Hydrogeologische Methoden. 1005 S., Berlin-Heidelberg-New York (Springer).
- LEHRBERGER, G., SAUERLE, A. & HARTMANN, U. (2003): Anwendung des SAR-DGM bei der tektonischen Interpretation des Moldanubikums am Westrand der Böhmischen Masse. – Geologica Bavarica, **107**: 269-280, München.
- MARECHAL, J.-C., DEWANDEL, B. & SUBRAHMANYAM, K. (2004): Use of hydraulic tests at different scales to characterize fracture network properties in the weathered-fractured layer of a hard rock

aquifer. – Water Resources Research, 40, W 11508, doi:10.1029/ 2004WR003137 (American Geophysical Union).

- MARTIN, N., HENNINGS, V. & DUIJNISVELD, W. (2004): Ableitung des Oberflächenabflusses für die Erstellung der Tafel Sickerwasserrate aus dem Boden im Hydrologischen Atlas von Deutschland. BGR-Forschungsbericht (unveröff.).
- MIN/TAFELWV (1984): Mineral- und Tafelwasser-Verordnung vom 1. August 1984 (BGBI. I S. 1036), zuletzt geändert durch Artikel 1 der Verordnung vom 1. Dezember 2006 (BGBI. I S. 2762).
- MORHARD, A. (2009): Kurzbeschreibung des Modells GWN-BW und Erweiterungen in Version 2.0. Unveröff. Beilage zur aktuellen Programmversion: 25 S., GIT HydroS Consult GmbH, Freiburg.
- NEUMANN, J. & SPRENGER, W. (2009): Hydrogeologische Karte von Bayern 1:500000 Blatt 4: Mittlere Grundwasserneubildung aus Niederschlag (1971–2000). – Augsburg (Bayer. Landesamt f. Umwelt).
- OBERMEIER, E. (2004): Die Landschaft der Gemeinde Außernzell und ihre Entstehung. In: Gemeinde Außernzell [Hrsg.]: Außernzell - Die Historie einer Gemeinde im Bayerischen Wald. – 12-20, Winzer (Duschl).
- PROJEKTGRUPPE AKTIONSPROGRAMM QUELLEN (2004): Bayerischer Quelltypenkatalog. 105 S., München (Bayer. Landesamt f. Wasserwirtschaft).
- PRZYLIPSKI, T.A. (2007): Radon as a natural radioactive tracer for studying crystalline rock aquifers – a few usage concepts. – In: MARSZAŁEK, H. & CHUDY, K. [Hrsg.]: Hydrogeologia – Selected Problems of the Bohemian Massif and Other Hardrock Terrains in Europe. – Acta Universitatis Wratislaviensis, **3041**: 125-142, Wroclaw (Wydawnictwo Uniwersytetu Wroclawskiego).
- RAUM, K.D. (2002): Markierungstechnische, bruchtektonisch-gefügekundliche und fotogeologische Untersuchungen zur Ermittlung der Grundwasserfließverhältnisse in der Verwitterungszone kristalliner Gesteine in Quellgebieten des Oberpfälzer/Bayerischen Waldes (Ost-Bayern/ Deutschland). – Diss. Friedrich-Alexander-Universität Erlangen-Nürnberg: 239 S., Erlangen.
- ROHRMÜLLER, J., TEIPEL, U., GEISS, E., DIEPOLDER, G.W., SIEMON, B. & VOSS, W. (2009): Airborne geophysical remote sensing vs. field mapping: A structural case-study from the Vilshofen area (Bavaria). 6th Congress on Regional Geological Cartography and Information Systems Munich, Germany, 9.-12. June 2009, Proceedings I: 321-323 München (Bayer. Landesamt f. Umwelt).
- RUBBERT, T. K. (2008): Hydrogeologische Modellbildung eines kombinierten porös-geklüfteten Grundwasserleitersystems des Bayerischen Waldes. – Bochumer Geowissenschaftliche Arbeiten, **14**: 378 S., Bochum (Ruhr-Universität).
- RUBBERT, T. K. & BENDER, S. (2007): Analysis of long-term spring observation data for characterisation of a near-surface weathered hardrock aquifer in the Bavarian Forest, Germany. – In: MARSZAŁEK, H. & CHUDY, K. [eds.]: Hydrogeologia – Selected Problems of the Bohemian Massif and Other Hardrock Terrains in Europe. – Acta Universitatis Wratislaviensis, **3041**: 39-48, Wroclaw (Wydawnictwo Uniwersytetu Wroclawskiego).

- SALIH, I.M., PETTERSON, H.B.L., SIVERTUN, Á. & LUND, E. (2002): Spatial correlation between radon (²²²Rn) in groundwater and bedrock uranium (²³⁸U): GIS and geostatistical analyses. J. Spat. Hydrol., 2(2), 10 S., (American Spatial Hydrology Union), http://www.spatialhydrology.com/journal/paper/radon/radon.PDF.
- Schubert, G., Alletsgruber, I., Finger, F., Gasser, V., Hobinger, G. & Lettner, H. (2010): Radon im Grundwasser des Mühlviertels (Oberösterreich). – Grundwasser, **15/1**: 33-42.
- STOBER, I. (1995): Die Wasserführung des kristallinen Grundgebirges. 191 S., Stuttgart (Enke).
- STRUCKMEIER, W.F. & MARGAT, J. (1995): Hydrogeological Maps: A Guide and a Standard Legend. Int. Con. Hydrogeology, **17**: 177 S., Hannover.
- TRINKWV (2001): Trinkwasserverordnung vom 21. Mai 2001 (BGBI. I S. 959), geändert durch Artikel 363 der Verordnung vom 31. Oktober 2006 (BGBI. I S. 2407).
- U.S. DEPARTMENT OF AGRICULTURE, SOIL CONSERVATION SERVICE [USDA-SCS] (1972): National Engineering Handbook. Section 4: Hydrology, Washington D.C.
- VERESS, C. (2005): Porositäts-, Wasseraufnahme- und Druckfestigkeitsmessungen an verschiedenen Kristallin-Varietäten des Bayerischen Waldes. – Tabellarischer Messbericht, 15 S., München (Bayer. Geol. L-Amt) (unveröff.).
- WAGNER, B., KUS, G., KAINZMAIER, B., WILFERTH, T., VEIT, W., FRITSCH, P., WROBEL, M., LINDENTHAL,
 W., NEUMANN, J. & SPRENGER, W. (2009): Erläuterungen zur Hydrogeologischen Karte von
 Bayern 1:500000. 88 S., Augsburg (Bayer. Landesamt f. Umwelt).
- WAGNER, B., TÖPFNER, C., LISCHEID, G., SCHOLZ, M., KLINGER, R. & KLAAS, P. (2003):
 Hydrogeochemische Hintergrundwerte der Grundwässer Bayerns. GLA-Fachberichte, 21: 250
 S., München (Bayer. Geol. L.-Amt).
- WAGNER, B. & WILFERTH, T. (2010): Hydrogeologische Karte von Bayern Anleitung zur digitalen Verarbeitung und Vorhaltung der Daten der Hydrogeologischen Landesaufnahme. – Stand März 2010, 40 S., (Bayer. Landesamt für Umwelt) (unveröff.).
- WILFORD, J.R., BIERWIRTH, P.N. & CRAIG, M.A. (1997): Application of airborne gamma ray spectrometry in soil/regolith mapping and applied geomorphology. – AGSO Journal of Australian Geology and Geophysics, **17/2**: 201–206, Canberra (Australian Govt. Pub. Service).
- WITTMANN, O. (1991): Standortkundliche Landschaftsgliederung von Bayern, Übersichtskarte 1:1000000. GLA-Fachberichte, **5**: 5–47, 1 Karte, München (Bayer. Geol. L-Amt).
- WRMG (2007): Wasch- und Reinigungsmittelgesetz vom 29. April 2007 (BGBI. I S. 600).
- WROBEL, J. P. (1983): Hydrogeologische Verhältnisse. In: UNGER, H. J.: Geologische Karte von Bayern 1:50000, Erläuterungen zu Blatt Nr. L 7342 Landau an der Isar: 95–107, München (Bayer. Geol. L.-Amt).

- WROBEL, J. P. (1984): Hydrogeologische Verhältnisse. In: UNGER, H. J.: Geologische Karte von Bayern 1:50000, Erläuterungen zu Blatt Nr. L 7544 Griesbach im Rottal: 180–198, München (Bayer. Geol. L.-Amt).
- WROBEL, J. P. (1985): Hydrogeologische Verhältnisse. In: UNGER, H. J.: Geologische Karte von Bayern 1:25000, Erläuterungen zu Blatt Nr. 7645 Neuhaus a. Inn: 79–84, München (Bayer. Geol. L.-Amt).
- ZEITLHÖFLER, M. (2006): Bericht zur Lineamentanalyse auf Basis von SRTM-Satellitenhöhendaten für die Hydrogeologische Landesaufnahme im EU Ziel-2-Gebiet. Projektbericht, Bayer. Landesamt f. Umwelt, München: 51 S. (unveröff.).
- ZEITLHÖFLER, M. (2007): Brittle Petrofabrics in the Central Bavarian Forest (SE Germany): Tectonic Evolution, Geomorphological Effects, and Hydrogeologic Implications. – Diss. Ludwig-Maximilians-Universität München: 402 S., München.
- ZEITLHÖFLER, M. & RAUM, K.D. (2005): Relationships between brittle tectonic structure and ground-water migration patterns in fractured rock aquifers of the Central Bavarian Forest, SE Germany.
 In: FREIWALD, A., RÖHLING, H.-G. & LÖFFLER, S.-B. [Hrsg.]: GeoErlangen 2005. System Earth
 Biosphere Coupling. Regional Geology of Central Europe. Int. Conference and Annual Meeting Geologische Vereinigung (GV), Deutsche Gesellschaft für Geowissenschaften (DGG): 423-424, Erlangen (Deutsche Gesellschaft für Geowissenchaften).

Anhang 1

Hydrogeologische Karten 1:50000 (HK50) der Planungsregion 12 Donau-Wald (Lage siehe Abb. 1-1)

Veröffentlichte Hydrogeologische Karten 1:50000 (HK50):

L7338 Rottenburg (B. Kainzmaier, P. Thom & M. Wrobel, 2008)
L7340 Dingolfing (B. Kainzmaier, P. Thom, M. Wrobel & K. Zosseder, 2008)
L7342 Landau a.d.Isar (S. Blumenstein, B. Kainzmaier, P. Thom, M. Wrobel & K. Zosseder, 2008)
L7542 Pfarrkirchen (B. Kainzmaier, P. Thom, M. Wrobel & K. Zosseder, 2008)
L7544 Bad Griesbach (B. Kainzmaier, P. Thom, M. Wrobel & K. Zosseder, 2008)
L7544 Bad Griesbach (B. Kainzmaier, P. Thom, M. Wrobel & K. Zosseder, 2008)
L7544 Bad Griesbach (B. Kainzmaier, P. Thom, M. Wrobel & K. Zosseder, 2008)
L7744/46 Simbach a.Inn/Würding (B. Kainzmaier, P. Thom, M. Wrobel & M. Zeitlhöfler, 2008)

Entwürfe Hydrogeologischer Karten 1:50000 (HK50):

L6940 Roding (S. Blumenstein & K. Zosseder, 2007) L6942 Viechtach (A. Graf, 2007) L6944/46 Zwiesel/Hirschbach (A. Graf, 2007) L7140 Straubing (S. Blumenstein & K. Zosseder, 2007) L7142, Deggendorf (S. Blumenstein & K. Zosseder, 2007) L7144 Regen (G.W. Diepolder, 2007) L7146 Grafenau (G.W. Diepolder, 2006) L7148 Bischofsreut (G.W. Diepolder, C. Vornehm & M. Zeitlhöfler, 2007) L7344 Vilshofen (S. Blumenstein & G.W. Diepolder & K. Zosseder, 2007) L7346 Waldkirchen (K. Beger, 2007) L7348 Wegscheid (M. Zeitlhöfler, 2007) L7348 Wegscheid (M. Zeitlhöfler, 2007)

Die veröffentlichten Kartenwerke können von der folgenden Seite bezogen werden: http://www.lfu.bayern.de/geologie/hydrogeologie_daten/hk50/index.htm

Anhang 2

Grundwasserbeschaffenheit – Verzeichnis der analysierten Parameter, Analysemethoden, Nachweis- und Bestimmungsgrenzen sowie Teilprobenbehandlung

Parameter		Einheit	Messmethode	Teilprobe	Nachweisgrenze (NG)	Bestimmungsgrenze (BG)
Gelände	parameter					
Wasserte	emperatur	[°C]	WTW	0		
pH-Wert	(Gelände)		WTW	0		
elektr. Le	itfähigkeit (25°C)	[µS/cm]	WTW	0		
O ₂ -Geha	lt	[mg/l]	WTW	0		0,1
O ₂ -Sättigung		[%]	WTW	0		0,1
CO ₂ frei		[mg/l]	Titration	0		
Laborwerte						
F ⁻ Fluorid	I	[mg/l]	IC	1	0,33	0,99
Cl-	Chlorid	[mg/l]	IC	1	0,48	1,45
Br	Bromid	[mg/l]	IC	1	0,29	0,86
NO ₃ -	Nitrat	[mg/l]	IC	1	1,4	4,2
NO ₂ -	Nitrit	[mg/l]	IC	1	0,32	0,97
SO42-	Sulfat	[mg/l]	IC	1	2,37	7,1
PO4 ³⁻	Phosphat	[mg/l]	IC	1	1,08	3,25
HCO ₃ -	Hydrogenkarbonat	[mg/l]	Titration	3	1,72	5,16
Na⁺	Natrium	[mg/l]	ICP/OES	2	0,01308	0,05232
K+	Kalium	[mg/l]	ICP/OES	2	0,05739	0,22955
NH ₄ +	Ammonium	[mg/l]	IC	2	0,66	1,97
Ca ²⁺	Calcium	[mg/l]	ICP/OES	2	0,02724	0,10897
Mg ²⁺	Magnesium	[mg/l]	ICP/OES	2	0,02558	0,10231
Fe(tot)	Eisen	[mg/l]	ICP/OES	2	0,00269	0,01078
Mn ²⁺	Mangan	[mg/l]	ICP/MS	2	0,000004	0,000015
Si	Silicium	[mg/l]	OES	2	0,32	1,27
Gesamtn	nineralisation	[mg/l]	berechnet			
Gesamth	ärte	[°dH]	berechnet		0,00971	0,0388
Karbonathärte		[°dH]	berechnet		0,08	0,24
Sättigung	gsindex		berechnet			
Basekap	azität bis pH 8,2	[mmol]/l	Titration			
Säurekap	oazität bis pH 4,3	[mmol]/l	berechnet		0,03	0,08
²²² Rn	Radon	[Bq/l]	LSC	4	5,2	

Par	ameter	Einheit	Messmethode	Teilprobe	Nachweisgrenze (NG)	Bestimmungsgrenze (BG)
Ag	Silber	[µg/l]	ICP/MS	2	0,003	0,013
AI	Aluminium	[µg/l]	ICP/MS	2	0,211	0,846
As	Arsen	[µg/l]	ICP/MS	2	0,013	0,051
Au	Gold	[µg/l]	ICP/MS	2	0,007	0,03
в	Bor	[µg/l]	ICP/MS	2	0,368	1,472
Ва	Barium	[µg/l]	ICP/MS	2	0,029	0,116
Be	Beryllium	[µg/l]	ICP/MS	2	0,013	0,05
Bi	Wismut	[µg/l]	ICP/MS	2	0,002	0,008
Cd	Cadmium	[µg/l]	ICP/MS	2	0,002	0,009
Ce	Cer	[µg/l]	ICP/MS	2	0,001	0,006
Co	Cobalt	[µg/l]	ICP/MS	2	0,001	0,004
Cr	Chrom	[µg/l]	ICP/MS	2	0,048	0,191
Cs	Cäsium	[µg/l]	ICP/MS	2	0,0003	0,001
Cu	Kupfer	[µg/l]	ICP/MS	2	0,013	0,053
Hg	Quecksilber	[µg/l]	ICP/MS	2	0,007	0,027
La	Lanthan	[µg/l]	ICP/MS	2	0,0003	0,001
Li	Lithium	[µg/l]	ICP/MS	2	0,011	0,043
Мо	Molybdän	[µg/l]	ICP/MS	2	0,015	0,06
Ni	Nickel	[µg/l]	ICP/MS	2	0,035	0,14
Pb	Blei	[µg/l]	ICP/MS	2	0,005	0,021
Rb	Rubidium	[µg/l]	ICP/MS	2	0,001	0,006
Sb	Antimon	[µg/l]	ICP/MS	2	0,002	0,007
Se	Selen	[µg/l]	ICP/MS	2	0,396	1,583
Sn	Zinn	[µg/l]	ICP/MS	2	0,008	0,03
Sr	Strontium	[µg/l]	ICP/MS	2	0,009	0,036
Th	Thorium	[µg/l]	ICP/MS	2	0,002	0,01
ті	Thallium	[µg/l]	ICP/MS	2	0,001	0,004
U	Uran	[µg/l]	ICP/MS	2	0,0005	0,002
V	Vanadium	[µg/l]	ICP/MS	2	0,007	0,027
Υ	Yttrium	[µg/l]	ICP/MS	2	0,0003	0,001
Zn	Zink	[µg/l]	ICP/MS	2	0,025	0,1

Messmethoden:

IC	Ionenchromatographie
ICP/MS	Massenspektrometer mit induktiv gekoppeltem Plasma
ICP/OES	Optisches Emissionsspektrometer mit induktiv gekoppeltem Plasma
WTW	WTW-Feldmessgeräte
LSC	Flüssig-Szintillationsmesstechnik
Teilproben:	
0	Vor-Ort-Messungen
1	100 ml, steril filtriert in Polyethylenflasche
2	100 ml, steril filtriert und angesäuert [HNO3 (Suprapur)] in Polyethylenflasche
3	1000 ml, unfiltriert in Polyethylenflasche
4	3,5 ml, im Glasvial, stabilisiert in 3,5 ml Szintillationscocktail

Anhang 3

Grundwasserbeschaffenheit – Verzeichnis der statistischen Maßzahlen der physikochemischen Parameter, geordnet nach hydrogeochemischen Einheiten

Die folgenden Tabellen geben für die unterschiedenen hydrogeochemischen Einheiten die statistischen Maßzahlen der einzelnen physikochemischen Parameter der Grundwasserbeschaffenheit an. Bei geringem Probenumfang (n < 10) werden die einzelne Perzentilwerte nicht angegeben, sondern nur Minimum, Median und Maximum. Die jeweiligen Nachweis- und Bestimmungsgrenzen (NG bzw. BG) der einzelnen Parameter sind in Anhang 2 aufgelistet.

Parameter parameter <t< th=""><th>Qua</th><th>rtär des Donautals</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Qua	rtär des Donautals										
Product Parameter Multipues	Param	eter	Einheit	Anza Probenal	hl der nmestellen				Statistik			
Waser Unit 131 0 6.0 8.8 9.7 10.5 11.5 12.6 19.4 plWort (cdinds) 132 0 6.48 6.94 80.05 897.8 895.4 1106.0 Ocfohat mg01 0 0 1.3 2.22 6.0 32.0 7.40 9.03 9.83 Ory ford mg01 13 0 2.6 2.16 30.8 4.31 54.3 67.8 116.2 F funct mg01 123 126 -NG <ng< td=""> <ng< td=""></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<>				gesamt	Parameter < NG	Minimum	10%- Quantil	25%- Quantil	Median	75%- Quantil	90%- Quantil	Maximum
pH-Wert (Gelinde) 132 0 6.48 6.94 7.02 7.00 7.30 7.30 7.30 7.30 7.30 7.30 7.30 7.30 807.8 7.31 1160.0 O_cfealat (mgl) 107 0 0.13 0.20 0.44 3.00 7.30 807.8 97.8 108.0 89.7 O_sfeat(gam) [mgl] 123 2.0 13.0 2.0 13.0 2.0 7.00 807.8 7.00 807.8 126.0 7.00 807.8 126.0 7.00 807.8 4.00 7.00	Wasse	rtemperatur	[°C]	131	0	6,0	8,8	9,7	10,5	11,5	12,6	19,4
etker. Latitalingtent (2s C) (pkechal) (moft) 0 30.50 \$7.00 <t< th=""><th>pH-We</th><th>ert (Gelände)</th><th></th><th>132</th><th>0</th><th>6,48</th><th>6,94</th><th>7,02</th><th>7,09</th><th>7,20</th><th>7,30</th><th>7,90</th></t<>	pH-We	ert (Gelände)		132	0	6,48	6,94	7,02	7,09	7,20	7,30	7,90
Openating Days	elektr.	Leitfahigkeit (25 °C)	[µS/cm]	132	0	205,0	577,2	0.54	800,5	897,8	955,4	10.68
Conversions Log Lin 0 Lin 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 2 1 3 3 1 1 1 1 1 2 1 1 3 1	O ₂ -Gel	tiauna	[mg/1]	107	0	1.3	2.2	6.0	32.0	7,50	9,70	98.9
F Function [mail] 128 126 c NG <	CO ₂ fr	ei	[mg/l]	131	0	2,6	21,6	30,8	43,1	54,3	67,8	116,2
Cr Chlorid [m91] 132 0 2,13 13,24 2,45. 40,00 73,00 73,84 117,17 Br Bronid [m91] 132 134 < Kol	F	Fluorid	[mg/l]	128	126	< NG	< NG	< NG	< NG	< NG	< NG	< BG
Br Bronid [mp/l] [128 [125 < NG	Cl	Chlorid	[mg/l]	132	0	2,13	13,24	24,51	40,90	57,00	73,84	117,17
NO ₂ Nitrat [mg]1 152 24 < NG	Br	Bromid	[mg/l]	128	125	< NG	< NG	< NG	< NG	< NG	< NG	2,03
ND: NITIT IBUI 1.52 1.51 < NG	NO ₃	Nitrat	[mg/l]	132	24	< NG	< NG	6,05	29,77	45,86	61,28	104,75
Sol, Sunn Image 1 2 No 1.00 <th1< th=""><th>NO₂</th><th>Nitrit</th><th>[mg/I]</th><th>132</th><th>131</th><th>< NG</th><th>< NG</th><th>< NG 22.78</th><th>< NG 22.46</th><th>< NG 45.73</th><th>< NG 55.45</th><th>< BG</th></th1<>	NO ₂	Nitrit	[mg/I]	132	131	< NG	< NG	< NG 22.78	< NG 22.46	< NG 45.73	< NG 55.45	< BG
Loss Loss <thloss< th=""> Loss Loss <thl< th=""><th>SO4</th><th>Sullat</th><th>[mg/I]</th><th>132</th><th>112</th><th>< NG</th><th>14,50</th><th>25,78</th><th>>5,40</th><th>45,75 < NG</th><th></th><th>137,90 < BG</th></thl<></thloss<>	SO4	Sullat	[mg/I]	132	112	< NG	14,50	25,78	>5,40	45,75 < NG		137,90 < BG
Naťium (mg/l) 132 0 2.674 4.895 7,190 9.228 13,13 22,76 43,26 K* Kalium (mg/l) 132 120 < NG	HCO ₃	Hydrogenkarbonat	[mg/l]	132	0	77,5	265,5	345,2	389,0	427,1	465,7	505,8
National (mgr] 122 2 2.0.7 4.9.39 7.100 9.2.23 1.7.13 1.2.10 4.2.10 Ki Kalium (mgr] 112 2 2 0.554 0.554 0.554 1.591 1.501 2.2.05 1.7.10 4.2.10 4.2.10 Ca ^h Caldum (mgr] 1132 0 2.6.7 1.7.10 1.2.31 1.3.91 1.4.03 1.6.10 Ga ^h Caldum (mgr] 1.32 0 5.577 17.05 21.38 2.5.48 3.0.33 3.3.23 35.89 Fettor Eism (mgr] 132 0 1.5.2 4.0.0 < NG	No ⁺	Notainm	[mg/l]	122	0	2674	1 205	7 100	0.228	12.12	22.76	12.26
Instructure Instructure <thinstructure< th=""> <thinstructure< th=""></thinstructure<></thinstructure<>	TVA K ⁺	Kalium	[mg/l]	132	2	2,074 < NG	4,895	0.858	9,228	3.007	5.502	43,20
Ca* Catching Imp 112 112 112 112 112 112 112 113 1140 1140 1161 1140 1161 1140 1161 1140 1161 1140 1161 1140 1161 1140 1161 1140 1161 1140 1161 1140 1161 1140 1161 1140 1161 1140 1161 1140 1161 1140 1161 1140 1161	NH4 ⁺	Ammonium	[mg/l]	132	130	< NG	< NG	<ng< th=""><th>< NG</th><th>< NG</th><th>< NG</th><th>4,30</th></ng<>	< NG	< NG	< NG	4,30
Mg ² Magnesium ing/l 132 0 5,577 17,05 21,38 25,48 30,63 33,23 35,89 Fettor Esen (mg/l) 132 84 < NG	Ca ²⁺	Calcium	[mg/l]	132	0	26,48	80.85	103,9	123,1	134,9	140,3	161,0
Ferton Disen [mg/l] 132 84 ∠ NG < NG	Mg^{2+}	Magnesium	[mg/l]	132	0	5,577	17,05	21,38	25,48	30,63	33,23	35,89
Im ^a Mangan [mg/l] 128 36 < NG	Fe(tot)	Eisen	[mg/l]	132	84	< NG	< NG	< NG	< NG	< BG	0,5411	4,903
Silicium [mg/l] 132 0 1,92 3,04 3,60 4,30 5,35 6,58 8,97 Gesamuthineralisation [mg/l] 132 0 151,2 463,5 580,6 683,9 723,5 768,7 876,6 Gesamuthineralisation ["dtl] 132 0 4,98 15,8 19,9 23,8 25,5 26,6 28,9 Karbonathärte ("dtl] 132 0 3,56 12,18 15,84 17,85 19,60 21,37 23,28 20,28 -0,16 Basekapaztiät bis ptl 4,3 [mmol/l] 131 0 2,016 0,49 0,70 0,98 1,24 1,54 2,64 Sänrekapaztiät bis ptl 4,3 [mmol/l] 132 0 1,271 4,352 5,558 6,375 7,000 7,633 8,289 Base [mg/l] 100 77 <ng< th=""> <ng< th=""></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<>	Mn ²⁺	Mangan	[mg/l]	128	36	< NG	< NG	< NG	0,00123	0,09786	0,3713	0,9560
Gesantmineralisation [mg/l] 132 0 151.2 463.5 580.6 683.9 723.5 768.7 876.6 Gesanthärte [°dH] 132 0 4.98 15.8 19.9 23.8 25.5 26.6 28.9 Karbonathärte [°dH] 132 0 -2.10 -0.69 -0.50 -0.40 -0.32 -0.28 -0.16 Basekapazitä bis pH 8.2 [mm0/l] 131 0 -2.10 -0.69 -0.50 -0.40 -0.32 -0.28 -0.16 Basekapazitä bis pH 8.2 [mm0/l] 132 0 1.271 4.352 5.58 6.375 7.000 7.63 8.28 ¹³³ Rn Radon [Bq/l] 187 21 < NG	Si	Silicium	[mg/l]	132	0	1,92	3,04	3,60	4,30	5,35	6,58	8,97
Gesamthärte [° dH] 132 0 4,98 15.8 19.9 23,8 25.5 26.6 28.9 Karbonathärte [° dH] 132 0 3,56 12,18 15,84 17,85 19,60 21,37 23,21 Sättigungshock (Calciumkarbonat) 131 0 2,10 0,69 0,50 0,40 0.32 0,28 0,218 0,28 0,210 0,98 1,24 1,54 2,64 Säurekapazität bis pH 8,2 [mmol/l] 131 0 0,06 0,49 0,70 0,98 1,24 1,54 2,64 Säurekapazität bis pH 8,2 [mmol/l] 132 0 1,271 4,352 66 8 14 2.6 152 ²¹² Rn <radon< th=""> [µg/l] 128 2.6 < NG</radon<>	Gesam	tmineralisation	[mg/l]	132	0	151,2	463,5	580,6	683,9	723,5	768,7	876,6
Karbonathärte [° dH] 132 0 3,55 12,18 15,84 17,85 19,60 21,37 23,21 Sättigungsindex (Calciumkarbonat) 131 0 -2,10 -0,69 -0,50 -0,40 -0,32 -0,28 -0,16 Basekapazität bis plt 8,2 [mmol/I] 131 0 0,06 0,49 0,70 0,98 1,24 1,54 2,64 Siurekapazität bis plt 8,3 [mmol/I] 132 0 1,271 4,352 5,658 6,375 7,000 7,633 8,289 ¹²³ Rn Radon [µg/I] 100 77 < NG	Gesam	thärte	[° dH]	132	0	4,98	15,8	19,9	23,8	25,5	26,6	28,9
Säittigungsindex (Calciumkarbonat) 131 0 -2,10 -0,69 -0,50 -0,40 -0,32 -0,22 -0,16 Basekapazität bis pH 8,2 [mmol/l] 131 0 0,06 0,49 0,70 0,98 1,24 1,54 2,64 Säurekapazität bis pH 4,3 [mmol/l] 132 0 1,271 4,352 5,658 6,375 7,000 7,633 8,289 Säurekapazität bis pH 4,3 [mmol/l] 132 0 1,271 4,352 5,658 6,375 7,000 7,633 8,289 Au Saurekapazität bis pH 4,3 [mmol/l] 132 0 2,77 4,715 9,784 22,45 172,8 Au Gold [µg/l] 128 17 <ng< th=""> <</ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<>	Karbo	nathärte	[° dH]	132	0	3,56	12,18	15,84	17,85	19,60	21,37	23,21
Basekapazitit bis pH 8,2 [mmol/l] 131 0 0,06 0,49 0,70 0,98 1,24 1,54 2,64 Säurekapazitit bis pH 4,3 [mmol/l] 132 0 1,271 4,352 5,658 6,375 7,000 7,633 8,289 2iiran Radon [Bg/l] 87 21 < NG	Sättigu	ingsindex (Calciumkarbonat)		131	0	-2,10	-0,69	-0,50	-0,40	-0,32	-0,28	-0,16
Sincrekapazität bis plf 4,3 [mm0/l] 132 0 1.271 4,352 5.558 6,375 7.000 7.633 8,289 ²³² Rn Radon [Jµg/l] 87 21 < NG	Baseka	pazität bis pH 8,2	[mmol/l]	131	0	0,06	0,49	0,70	0,98	1,24	1,54	2,64
The Radon [lgq]1 87 21 < NG	Säurek	apazität bis pH 4,3	[mmol/l]	132	0	1,271	4,352	5,658	6,375	7,000	7,633	8,289
Ag Silber [µg/l] 100 77 < NG	***Rn	Radon	[Bq/I]	87	21	< NG	<ng< th=""><th>6</th><th>8</th><th>14</th><th>26</th><th>152</th></ng<>	6	8	14	26	152
Al Aluminium [µg/l] 128 26 < KG	Ag	Silber	[µg/l]	100	77	< NG	< NG	< NG	< NG	< NG	< BG	1,350
As Arsen [µg/l] 128 17 < NG	Al	Aluminium	[µg/l]	128	26	< NG	< NG	1,931	4,775	9,784	22,45	172,8
Au Gold [µg/l] 101 91 < NG	As	Arsen	[µg/l]	128	17	< NG	< NG	0,136	0,333	0,823	1,928	13,82
B Bor [µµ/] 128 12 < NG	Au	Gold	[µg/l]	101	91	< NG	< NG	< NG	< NG	< NG	< NG	0,565
Ba Birrum [µµ/l] 127 0 7,06 40,1 52,2 66,4 105 141 519 Be Beryllium [µµ/l] 128 88 < NG	B	Bor	[µg/1]	128	12	< NG	< BG	5,740	12,56	29,75	43,19	84,80
Bit Wismut [µg/l] 128 114 < NG	Da Bo	Baryllium	[µg/1]	127	88	7,00	40,1	52,2 < NG	08,4	105	141 < BG	0.090
Cd Cadmium [µg/l] 128 51 < NG	Bi	Wismut	[µg/1]	128	114	< NG	< NG	< NG	< NG	< NG	< BG	0.100
Ce Cer [µg/l] 124 0 < BG	Cd	Cadmium	[µg/l]	128	51	< NG	< NG	< NG	< BG	0,014	0,030	0,150
Co Cobalt [µg/l] 128 12 < NG	Ce	Cer	[µg/l]	124	0	< BG	0,009	0,019	0,034	0,071	0,103	0,370
Cr Chrom [µg/l] 128 44 < NG	Co	Cobalt	[µg/l]	128	12	< NG	0,010	0,049	0,111	0,199	0,374	121,0
Cs Cäsium [µg/l] 128 25 < NG	Cr	Chrom	[µg/l]	128	44	< NG	< NG	< NG	0,200	0,682	1,249	4,290
Cu Kupter [µg/l] 128 6 <ng< th=""> 0,349 0,514 0,796 1,355 2,136 21,65 Hg Quecksilber [µg/l] 105 90 <ng< th=""> <<ng< th=""> <ng< th=""> <ng< th=""> <ng< th=""></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<></ng<>	Cs	Cäsium	[µg/l]	128	25	< NG	< NG	0,0018	0,0050	0,0080	0,0160	0,1070
ng Queexsineer [µg/l] 105 90 < NG	Cu	Kupfer	[µg/l]	128	6	< NG	0,349	0,514	0,796	1,355	2,136	21,65
La Lantman [µg/1] 126 4 < NG	Hg	Quecksilber	[µg/I]	105	90	< NG	< NG	< NG	< NG	< NG 0.0162	< BG	1,190
Mo Molybdän [µg/l] 128 23 < NG	Li	Lithium	[µg/1] [µø/1]	120	4	0.794	1.258	1.935	2.631	3.815	4.952	19.80
Ni Nickel [µg/l] 128 52 < NG	Mo	Molybdän	[ug/]]	128	23	< NG	< NG	< BG	0,199	0,359	0,612	1,745
Pb Blei [μg/l] 128 67 < NG	Ni	Nickel	[µg/l]	128	52	< NG	< NG	< NG	0,585	2,415	4,831	6,795
Rb Rubidium [µg/l] 128 3 < NG	Pb	Blei	[µg/l]	128	67	< NG	< NG	< NG	< NG	0,077	0,139	0,883
Sb Antimon [µg/l] 128 60 < NG	Rb	Rubidium	[µg/l]	128	3	< NG	0,093	0,233	0,422	0,649	0,985	5,937
Se Selen [μg/l] 105 50 < NG	Sb	Antimon	[µg/l]	128	60	< NG	< NG	< NG	< BG	0,055	0,144	1,040
Sn Zinn [µg/l] 128 34 < NG	Se	Selen	[µg/l]	105	50	< NG	< NG	< NG	< BG	< BG	1,767	4,319
Sr Strontum [µg/l] 1.28 0 0.38 1.66 2.10 2.59 308 4.33 728 Th Thorium [µg/l] 1.27 95 < NG	Sn	Zinn	[µg/l]	128	34	< NG	< NG	< NG	< BG	0,362	0,745	1,867
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sr	Strontium	[µg/I]	128	0	0,38	100	210	259	308 C D C	455	/28
$ _{11}$ Thallium $ _{07} _{11}$ $ _{78}$ $ _{78}$ $ _{78}$ $ _{76$	1 ft T1	Thallium	[µg/1]	127	95	< NG	< NG	< NG	< NG	< BG	0,048	0,240
Image: second	U	Uran	[µg/1] [µg/1]	120	35	< NG	0.5310	1 077	2.007	3 908	7 423	39.14
V Vanadium [µg/l] 128 52 $<$ NG	v	Vanadium	[µg/]]	128	52	< NG	< NG	<ng< th=""><th>0,113</th><th>0,372</th><th>0,773</th><th>3,150</th></ng<>	0,113	0,372	0,773	3,150
Y Yttrium [µg/l] 128 0 0,0180 0,0260 0,0370 0,0595 0,1013 0.1639 0,4920	Y	Yttrium	[µg/l]	128	0	0,0180	0,0260	0,0370	0,0595	0,1013	0,1639	0,4920
Zn Zink [µg/l] 128 0 0,289 1,197 2,525 5,554 14,52 41,47 875,1	Zn	Zink	[µg/l]	128	0	0,289	1,197	2,525	5,554	14,52	41,47	875,1

Anhang 3-1: Statistische Auswertung der Grundwasseranalysen aus dem Quartär des Donautals.

< NG = kleiner Nachweisgrenze

Schotter und Sande des intrakristallinen Tertiärs											
Param	eter	Einheit	Anza Probenal	hl der mestellen			•	Statistik			
			gesamt	Parameter < NG	Minimum	10%- Quantil	25%- Quantil	Median	75%- Quantil	90%- Quantil	Maximum
Wasser	rtemperatur	[°C]	8	0	7,4			9,6			11,0
pH-We	ert (Gelände)		8	0	5,30			6,22			7,40
elektr.	Leitfähigkeit (25 °C)	[µS/cm]	8	0	71,0			168,0			297,0
O ₂ -Gel	nalt	[mg/l]	8	0	2,20			9,65			10,40
O ₂ -Sat	ligung	[%]	8	0	20,0			88,0			98,0
CO ₂ II		[iiig/1]	0	0	4,4			39,2			75,7
F	Fluorid	[mg/l]	8	7	< NG			< NG			< BG
CI.	Chlorid	[mg/l]	8	0	1,60			17,19			32,77
Br	Bromid	[mg/l]	8	8	< NG			< NG			< NG
NO ₃	Nitrat	[mg/l]	8	1	< NG			8,76			24,52
NO ₂	Nitrit Seefent	[mg/I]	8	8	< NG			< NG			< NG
804 PO. ³⁻	Phosphat	[mg/I]	8	2	< NG			< bG			51,65
HCO ³	Hydrogenkarbonat	[mg/l]	8	0	12.8			19.2			90.3
	,	[B, •]	2		,0		-	->,~		1	,.
Na ⁺	Natrium	[mg/l]	8	0	2,687			6,578			10,24
K ⁺	Kalium	[mg/l]	8	0	< BG			0,554			2,266
NH4 ⁺	Ammonium	[mg/l]	8	8	< NG			< NG			< NG
Ca ⁻⁺ Ma ²⁺	Magnagium	[mg/I]	8	0	7,030			12,23			32,50
Fe(tot)	Fisen	[IIIg/I]	8	5	2,303			4,414 < NG			0.1335
Mn ²⁺	Mangan	[mg/l]	8	0	0.00081			0.00539			0,1335
Si	Silicium	[mg/l]	8	0	2,87			5,14			12,85
					,		1				,
Gesam	tmineralisation	[mg/l]	8	0	60,83			94,64			218,7
Gesam	thärte	[° dH]	8	0	1,51			2,74			7,15
Karbo	natharte 	[°dH]	8	0	0,59			0,88			4,14
Baseka	ngsindex (Calciumkarbonat nazität his nH 8 2	/ [mmol/l]	8	0	-4,39			-3,27			-2,28
Säurek	anazität his nH 4.3	[mmol/l]	8	0	0.210			0.315			1,72
222Rn	Radon	[Bg/l]	8	3	< NG			27			64
							r			I	
Ag	Silber	[µg/I]	6	6	< NG			< NG			< NG
AI	Augen	[µg/I]	8	0	7,592			15,56			151,0
As	Gold	[μg/1]	6	5	< NG			< NG			1,378 < BG
B	Bor	[µg/1]	8	3	< NG			< BG			6.970
Ba	Barium	[μg/l]	8	0	8,99			49,5			69,6
Be	Beryllium	[µg/l]	8	1	< NG			< BG			0,093
Bi	Wismut	[µg/l]	8	6	< NG			< NG			< BG
Cd	Cadmium	[µg/l]	8	0	< BG			0,038			0,081
Ce	Cer	[µg/l]	8	0	0,026			0,167			0,808
Co	Cobalt	[µg/l]	8	0	0,005			0,095			0,682
Cr	Chrom	[µg/l]	8	2	< NG			< BG			0,551
Cr	Casium	[µg/I]	8	0	0,0010			0,0160			0,2330
Hø	Quecksilber	[µg/1] [µg/1]	6	6	< NG			< NG			< NG
La	Lanthan	լաց/1] [ug/]]	8	0	0,0070			0,0580			0,1870
Li	Lithium	[µg/l]	8	0	0,801			2,111			17,03
Mo	Molybdän	[µg/l]	8	6	< NG			< NG			1,222
Ni	Nickel	[µg/l]	8	0	0,269			2,757			3,743
Pb	Blei	[µg/l]	8	4	< NG			< BG			0,620
Rb	Rubidium	[µg/l]	8	1	< NG			1,732			5,235
Sb	Antimon	[µg/l]	8	6	< NG			< NG			0,335
Se	Selen	[µg/l]	6	5	< NG			< NG			< BG
Sn S	Linn	[µg/l]	8	7	< NG			< NG			< BG
Sr Th	Thorium	[µg/1]	8	5	17,2			>>,/ < NG			0.030
TI	Thallium	[µg/1]	8	4	< NG			< BG			0.006
U	Uran	լաց/1] [ug/]]	8	0	0,0040			0,0080			0,4550
V	Vanadium	[µg/l]	8	5	< NG			< NG			0,653
Y	Yttrium	[µg/l]	8	0	0,0350			0,1765			1,095
Zn	Zink	[µg/]]	8	0	1,635			4,903			10.70

Anhang 3-2: Statistische Auswertung der Grundwasseranalysen aus den Schottern und Sanden des intrakristallinen Tertiärs.

< NG = kleiner Nachweisgrenze

Sedim	ente der Tertiärbuch	ten, Brau	nkohlent	ertiär (OS	SM)						
Paramet	er	Einheit	Anza Probenal	hl der 1mestellen				Statistik			
			gesamt	Parameter < NG	Minimum	10%- Quantil	25%- Quantil	Median	75%- Quantil	90%- Quantil	Maximum
Wasserte	emperatur	[°C]	24	0	8,8	9,8	10,1	10,7	11,5	12,7	16,0
pH-Wert	t (Gelände)		24	0	5,80	6,16	6,40	6,65	6,92	7,31	7,80
elektr. L	eitfähigkeit (25 °C)	[µS/cm]	24	0	82,0	114,5	178,5	274,0	442,0	552,9	613,0
O2-Geha	lt	[mg/l]	15	0	0,30	0,58	3,09	5,10	7,60	8,58	9,90
O ₂ -Sättig	gung	[%]	23	0	2,0	3,2	15,6	45,0	71,5	80,3	92,0
CO ₂ frei		[mg/l]	24	0	5,7	7,2	17,9	31,9	53,6	62,4	66,9
F F	Iuorid	[mg/l]	24	19	< NG	< NG	< NG	< NG	< NG	< BG	< BG
CI: (Chlorid	[mg/l]	24	0	< BG	< BG	3.09	6,90	14.44	19.21	34.20
Br' F	Bromid	[mg/l]	24	24	< NG	< NG	<ng< th=""><th>< NG</th><th>< NG</th><th>< NG</th><th>< NG</th></ng<>	< NG	< NG	< NG	< NG
NO ₃ N	Nitrat	[mg/l]	24	7	< NG	< NG	< NG	9,98	16,89	25,78	31,71
NO ₂ [·] N	Nitrit	[mg/l]	24	24	< NG	< NG	< NG	< NG	< NG	< NG	< NG
SO4 ² S	Sulfat	[mg/l]	24	3	< NG	< BG	< BG	< BG	10,91	13,37	20,36
PO4 ³ F	Phosphat	[mg/l]	24	24	< NG	< NG	< NG	< NG	< NG	< NG	< NG
HCO3. H	Iydrogenkarbonat	[mg/l]	24	0	18,9	43,0	79,2	117,5	235,8	293,8	416,7
NT + -	x . •		2.1	C	0.055	2 27 1	2.6.15	E 005	0.575	15.00	24.20
Na' N	Natrium Zakum	[mg/l]	24	0	2,355	3,374	3,946	5,206	8,767	15,39	34,39
K P	xanum	[mg/I]	24	0	< BG	0,377	0,606	1,393	2,811	6,041	9,965
\mathbf{NH}_4 A	Ammonium	[mg/I]	24	23	< NG	< NG	< NG	< NG	< NG	< NG	< BG
Ca C		[mg/1]	24	0	7,432	9,290	5 424	\$1,95 8 120	51,00	18.00	21.62
Nig N Fa(tat) E	Figen	[mg/l]	24	0	2,003	2,970	5,454	6,150	0.2061	10,99	2 060
Mn ²⁺	Jangan	[IIIg/1]	24	0	0.00022	< NG	< NG	< BU	0.02901	0.1110	0.3038
Si S	Silicium	[IIIg/1]	24	0	4 36	5.06	6.70	8 40	12 61	16 31	17.61
51 5	Jincium	[mg/1]	24	0	4,50	5,00	0,70	0,40	12,01	10,51	17,01
Gesamtn	nineralisation	[mg/l]	24	0	64,41	88,88	138,1	208,2	359,6	456,1	549,1
Gesamth	ıärte	[° dH]	24	0	1,59	2,01	3,94	6,43	9,36	14,0	17,4
Karbona	nthärte	[° dH]	24	0	0,87	1,97	3,63	5,39	10,82	13,48	19,12
Sättigun	gsindex (Calciumkarbonat)		24	0	-4,05	-3,02	-2,64	-1,84	-1,17	-0,45	-0,29
Basekapa	azität bis pH 8,2	[mmol/l]	24	0	0,13	0,16	0,41	0,73	1,22	1,42	1,52
Säurekaj	pazität bis pH 4,3	[mmol/l]	24	0	0,311	0,705	1,298	1,925	3,866	4,814	6,829
²²² Rn F	Radon	[Bq/l]	13	4	< NG	< NG	<ng< th=""><th>12</th><th>23</th><th>47</th><th>120</th></ng<>	12	23	47	120
Ag S	Silber	[ug/l]	23	20	< NG	< NG	< NG	< NG	< NG	< NG	< BG
Al A	Aluminium	[µg/l]	24	2	< NG	2,918	4,041	13,70	26,65	48,20	99,73
As A	Arsen	[µg/l]	24	6	< NG	< NG	< BG	0,108	0,360	1,444	2,640
Au (Gold	[µg/l]	23	22	< NG	< NG	< NG	< NG	< NG	< NG	< BG
B E	Bor	[µg/l]	24	7	< NG	< NG	< NG	2,953	6,218	29,24	122,0
Ba E	Barium	[µg/l]	24	0	22,1	25,3	54,5	92,1	140	354	485
Be E	Beryllium	[µg/l]	24	14	< NG	< NG	< NG	< NG	< BG	0,076	0,356
Bi V	Wismut	[µg/l]	24	10	< NG	< NG	< NG	0,032	0,131	0,236	0,467
Cd C	Cadmium	[µg/l]	24	7	< NG	< NG	< NG	< BG	0,020	0,040	0,153
Ce C	Cer	[µg/l]	24	0	0,006	0,011	0,016	0,066	0,143	0,731	2,284
Co C	Cobalt	[µg/l]	24	6	< NG	< NG	< BG	0,044	0,113	0,301	1,561
Cr C	hrom	[µg/l]	24	12	< NG	< NG	< NG	< BG	0,311	0,674	1,006
Cs C	Zäsium	[µg/I]	24	4	< NG	< NG	0,0016	0,0045	0,0168	0,0250	0,1060
Cu F	Aupter	[µg/1]	24	1	< NG	0,210	0,310	0,553	1,008	2,896	5,490
ng (anthan	[µg/1]	23	21	0.0030	< NG	< NG	< NG	< NG 0.0318	0.1457	0,291
	ithium	[µg/1]	24	0	0,0050	0,0050	1 030	3.008	10.15	23.10	57.87
Mo N	Molyhdän	[µg/1]	24	8	< NG	< NG	< NG	0.094	0.320	0.493	1 170
Ni N	Nickel	[µg/1]	24	5	< NG	< NG	< BG	1.092	1.813	2,511	3 413
Pb F	Slei	[µg/]]	24	6	< NG	< NG	< BG	0.044	0.094	0.173	0.438
Rb F	Rubidium	[ug/]]	24	4	< NG	< NG	0.315	0.894	2,892	5,255	7,939
Sb A	Antimon	[µg/]]	24	22	< NG	< NG	< NG	< NG	< NG	< NG	0.241
Se S	Selen	[µg/l]	23	17	< NG	< NG	< NG	< NG	< BG	< BG	3,561
Sn Z	Zinn	[µg/l]	24	13	< NG	< NG	< NG	< NG	0,037	0,083	0,889
Sr S	Strontium	[µg/l]	24	0	11,1	30,5	49,6	85,2	148	587	721
Th 1	Thorium	[µg/l]	24	13	< NG	< NG	< NG	< NG	0,016	0,037	0,114
TI I	Fhallium	[µg/l]	24	19	< NG	< NG	< NG	< NG	< NG	0,006	0,017
U U	Uran	[µg/l]	24	0	0,0020	0,0043	0,0095	0,0405	0,2115	0,9481	1,500
V V	Vanadium	[µg/l]	24	12	< NG	< NG	< NG	< BG	0,308	0,764	1,558
Y Y	Yttrium	[µg/l]	24	0	0,0060	0,0212	0,0293	0,0745	0,0990	0,2155	0,4360
Zn Z	Zink	[µg/l]	24	1	< NG	1,074	2,389	4,091	8,059	18,77	88,24

Anhang 3-3: Statistische Auswertung der Grundwasseranalysen aus den Sedimenten der Tertiärbuchten und dem Braunkohlentertiär (OSM).

< NG = kleiner Nachweisgrenze

Ortenb	ourger Schotterabfolg										
Parameter	r	Einheit	Anza Probenal	hl der mestellen				Statistik		•	•
			gesamt	Parameter < NG	Minimum	10%- Quantil	25%- Quantil	Median	75%- Quantil	90%- Quantil	Maximum
Wasserten	nperatur	[°C]	25	0	9,5	9,9	10,6	10,9	11,9	14,6	16,0
pH-Wert ((Gelände)		25	0	6,50	6,89	7,13	7,23	7,60	7,80	8,07
elektr. Lei	tfähigkeit (25 °C)	[µS/cm]	25	0	355,0	441,2	519,0	589,0	613,0	755,4	919,0
O ₂ -Gehalt		[mg/l]	17	0	< BG	0,16	0,45	1,20	6,50	8,01	8,78
O ₂ -Sättigu	ing	[%]	24	0	0,6	1,5	2,5	10,3	62,8	80,8	90,0
CO ₂ frei		[mg/l]	25	0	1,8	5,6	8,8	20,2	40,5	45,8	67,3
F Flu	uorid	[mg/l]	25	18	< NG	< NG	< NG	< NG	< BG	< BG	1,06
Cl ⁻ Ch	ılorid	[mg/l]	25	0	2,15	5,11	8,64	21,16	30,00	37,16	61,85
Br Br	omid	[mg/l]	25	25	< NG	< NG	< NG	< NG	< NG	< NG	< NG
NO ₃ Ni	trat	[mg/l]	25	14	< NG	< NG	< NG	< NG	27,20	41,59	47,50
NO ₂ ⁻ Ni	trit	[mg/l]	25	25	< NG	< NG	< NG	< NG	< NG	< NG	< NG
SO4 ² · Su	lfat	[mg/l]	25	6	< NG	< NG	< BG	7,86	23,00	28,33	41,05
PO ₄ ³ Ph	osphat	[mg/l]	25	25	< NG	< NG	< NG	< NG	< NG	< NG	< NG
HCO ₃ [·] Hy	ydrogenkarbonat	[mg/l]	25	0	111,7	204,5	288,6	349,0	378,3	416,1	500,3
Na ⁺ Na	atrium	[mg/l]	24	0	3 ()62	5 222	6 3 2 3	11.15	50.89	73.16	105.6
K ⁺ K	alium	[mg/1]	24	1	< NG	< BG	0,915	1.746	4,901	6.851	8.845
NH ⁺ Ar	nmonium	[mg/l]	25	17	< NG	< NG	< NG	< NG	< BG	< BG	< BG
Ca ²⁺ Ca	alcium	[mg/l]	25	0	15.77	25.74	35.23	61.62	83.32	102.4	148.5
Mg ²⁺ Ma	agnesium	[mg/1]	25	0	6.677	10.33	11.23	20.95	25.04	28.85	31.72
Fe(tot) Ei	sen	[mg/l]	25	13	< NG	< NG	< NG	< NG	0,1873	0,5678	3,821
Mn ²⁺ Ma	angan	[mg/l]	25	6	< NG	< NG	< BG	0,03460	0,05422	0,1116	0,2171
Si Sil	licium	[mg/l]	25	0	4,64	6,45	7,18	8,28	9,02	11,35	12,67
<i>a</i>	10 / 1	r (1)	24	0	2/2 7	225.6	112.2	505.0	5 0 < 1	(52.0	701.0
Gesamtmi	ineralisation	[mg/l]	24	0	262,7	335,6	443,3	505,0	526,1	652,3	781,9
Gesamthä	rte	[° dH]	25	0	3,74	6,09	8,15	12,4	17,0	21,0	27,9
Karbonati	harte	[° dH]	25	0	5,12	9,39	13,24	16,02	17,36	19,10	22,96
Baselennes	sindex (Calciumkarbonat)	[mmo]/l]	25	0	-1,0/	-1,09	-0,59	-0,45	-0,55	-0,29	-0,21
Säurekopa	zität bis pH 8,2	[mmol/1]	25	0	1,820	2 252	0,20	5 721	6 200	6.820	1,55
²²² Rn Ra	azitat bis pri 4,5	[IIIII01/1] [Ba/1]	16	2	1,829	5,552	6	7	10	17	22
		[124]/1]	10	-	(110	(110	0	,	10	.,	22
Ag Sil	lber	[µg/l]	25	20	< NG	< NG	< NG	< NG	< NG	< BG	0,017
Al Al	uminium	[µg/l]	25	3	< NG	< NG	2,137	4,014	9,420	29,16	126,6
As Ar	sen	[µg/l]	25	9	< NG	< NG	<ng< th=""><th>0,188</th><th>0,369</th><th>1,413</th><th>15,30</th></ng<>	0,188	0,369	1,413	15,30
Au Go	old	[µg/l]	25	25	< NG	< NG	< NG	< NG	< NG	< NG	< NG
B B0	or	[µg/I]	25	1	< NG	3,947	6,213	46,98	317,9	440,5	564,0
Ba Ba	irium	[µg/1]	25	0	8,05	13,2	22,1	55,8 < NC	124	147	195 < PC
Bi W	ismut	[µg/1]	25	25	< NG	< NG	< NG	< NG	< NG	< NG	< NG
Cd Ca	admium	[µg/1]	25	18	< NG	< NG	< NG	< NG	< RG	0.012	0.040
Ce Ce	۲ ۲	[µg/1]	25	0	< BG	0.007	0.017	0.024	0.044	0.061	0.283
Co Co	obalt	[µg/l]	25	6	< NG	< NG	0.004	0,030	0,040	0,077	0,411
Cr Ch	irom	[µg/l]	25	7	< NG	< NG	< NG	< BG	0,482	1,318	4,200
Cs Cä	isium	[µg/l]	25	3	< NG	< BG	0,0090	0,0220	0,2410	0,7522	1,846
Cu Ku	upfer	[µg/l]	25	0	0,091	0,133	0,219	0,391	1,251	1,928	29,78
Hg Qu	uecksilber	[µg/l]	25	25	< NG	< NG	< NG	< NG	< NG	< NG	< NG
La La	nthan	[µg/l]	25	1	< NG	0,0030	0,0060	0,0060	0,0150	0,0170	0,0660
Li Li	thium	[µg/l]	25	0	1,766	2,355	3,706	7,213	45,38	72,01	84,37
Mo Mo	olybdän	[µg/l]	25	4	< NG	< NG	0,062	0,202	0,356	0,414	0,571
Ni Ni	ckel	[µg/l]	25	13	< NG	< NG	< NG	< NG	0,434	1,524	2,130
Pb Bl	ei	[µg/l]	25	8	< NG	< NG	< NG	0,030	0,055	0,085	0,160
Rb Ru	ıbidium	[µg/l]	25	0	< BG	0,177	0,392	1,062	8,416	10,90	16,41
Sb Ar	ntimon	[µg/l]	25	21	< NG	< NG	< NG	< NG	< NG	< BG	0,349
Se Se	ien	[µg/l]	25	25	< NG	< NG	< NG	< NG	< NG	< NG	< NG
Sn Zi	nn 	[µg/I]	25	7	< NG	< NG	< NG	< BG	0,095	0,770	1,058
or Sti	rontium	[µg/I]	25	10	69,5	101	13/	200	039 < NC	832 0.022	990
ти In ті ті	normalli	[µg/1]	23	19				< NG	< NG	0,055	U,335
	iaindill '9n	[µg/1]	25	23 0	0.0040	0.0076	0.0150	0.2350	0.8470	1 304	3 305
V V	anadium	[µg/1]	25	22	< NG	< NG	< NG	< NG	< NG	< BG	0 549
Y Vi	trium	[II0/]]	25	1	< NG	0.0258	0.0330	0.0400	0.0550	0.0982	0.2325
Zn Zi	nk	[µg/]]	25	1	< NG	0,351	1,154	7,506	12,91	20,96	29,50

Anhang 3-4: Statistische Auswertung der Grundwasseranalysen aus der Ortenburger Schotterabfolge.

< NG = kleiner Nachweisgrenze

Kre	ide/Tertiär-Mischwässe	r									
Param	eter	Einheit	Anza Probenal	hl der mestellen				Statistik			•
			gesamt	Parameter < NG	Minimum	10%- Quantil	25%- Quantil	Median	75%- Quantil	90%- Quantil	Maximum
Wasse	rtemperatur	[°C]	8	0	9,9			11,0			13,1
pH-W	ert (Gelände)	[uS/am]	8	0	7,14			7,50			8,20
Og-Ge	halt	[µ3/cm]	6	0	0.30			3.09			10.46
O ₂ -Sät	tigung	[%]	8	0	1,8			29,1			97,2
CO ₂ fi	ei	[mg/l]	8	0	2,6			7,9			20,2
F-	Fluorid	[mg/]]	8	6	< NG			< NG			2.26
CI.	Chlorid	[mg/l]	8	0	< BG			7,25			39,22
Br	Bromid	[mg/l]	8	8	< NG			< NG			< NG
NO ₃	Nitrat	[mg/l]	8	5	< NG			< NG			18,82
NO ₂ ⁻	Nitrit	[mg/l]	8	8	< NG			< NG			< NG
SO4 ⁻	Sulfat	[mg/l]	8	2	< NG			11,96			15,57 < NG
HCO ₃	Hvdrogenkarbonat	[mg/l]	8	0	205.0			256.9			365.5
	,	(8,-)					1	,	1	1	
Na ⁺ K ⁺	Natrium Kalium	[mg/l]	8	0	2,887			4,667			95,00
NH. ⁺	Ammonium	[mg/1]	8	7	< NG			< NG			< BG
Ca ²⁺	Calcium	[mg/l]	8	0	28,17			55,08			72,30
Mg ²⁺	Magnesium	[mg/l]	8	0	11,72			16,20			19,68
Fe(tot)	Eisen	[mg/l]	8	5	< NG			< NG			0,9834
Mn ²⁺	Mangan	[mg/l]	8	1	< NG			0,00856			0,02860
Si	Silicium	[mg/l]	8	0	6,52			8,95			13,93
Gesan	tmineralisation	[mg/l]	8	0	320,0			384,6			564,8
Gesan	thärte	[° dH]	8	0	7,10			11,0			13,9
Karbo	nathärte	[° dH]	8	0	9,41			11,79			16,77
Sättig	ingsindex (Calciumkarbonat)	r 101	8	0	-0,94			-0,47			0,12
Säurol	apazitat bis pH 8,2	[mmol/l]	8	0	0,06			0,18			0,46
222Rn	Radon	[IIIII01/1] [Ba/1]	3	1	< NG			4,211			17
		(
Ag	Silber	[µg/l]	8	7	< NG			< NG			< BG
AI	Arson	[µg/1]	8	4	< NG			< BG 0.707			3,586
Au	Gold	[µg/1] [µg/1]	8	8	< NG			< NG			< NG
В	Bor	[µg/l]	8	3	< NG			5,200			541,1
Ba	Barium	[µg/l]	8	0	3,92			15,3			265
Be	Beryllium	[µg/l]	8	6	< NG			< NG			< BG
Bi	Wismut	[µg/l]	8	8	< NG			< NG			< NG
Ca	Cadmium	[µg/1]	8	3	< NG			< NG			0,009
Co	Cobalt	(μg/l]	8	3	< NG			0,019			0,166
Cr	Chrom	[µg/l]	8	4	< NG			< NG			3,764
Cs	Cäsium	[µg/l]	8	1	< NG			0,1700			2,072
Cu	Kupfer	[µg/l]	8	0	0,115			0,496			1,011
Hg	Quecksilber	[µg/l]	8	8	< NG			< NG			< NG
La Li	Lanthan Lithium	[µg/I]	8	4	< NG 2 788			< BG 8 3/10			0,0060
Мо	Molybdän	(μg/1) [ug/]]	8	1	< NG			0,659			1,405
Ni	Nickel	[µg/l]	8	4	< NG			0,207			1,400
Pb	Blei	[µg/l]	8	5	< NG			< NG			0,043
Rb	Rubidium	[µg/l]	8	1	< NG			2,575			17,28
Sb	Antimon	[µg/l]	8	5	< NG			< NG			0,022
Se	Seien Zinn	[µg/I]	8	8	< NG			< NG			< NG 0.074
Sr	Strontium	[μg/1] [μσ/1]	8	0	< NG 85.9			213			778
Th	Thorium	[μg/l]	8	7	< NG			< NG			0,041
Tl	Thallium	[µg/l]	8	8	< NG			< NG			< NG
U	Uran	[µg/l]	8	1	< NG			0,3095			2,060
V	Vanadium	[µg/l]	8	7	< NG			< NG			0,150
Y	Yttrium	[µg/l]	8	4	< NG			0,0035			0,0530
Zn	Zink	[µg/l]	8	0	0,366			2,813			932,8

Anhang 3-5: Statistische Auswertung der Grundwasseranalysen der Kreide/Tertiär-Mischwässer.

< NG = kleiner Nachweisgrenze

Dog	ger/Malm-Mischwässe										
Param	eter	Einheit	Anza Probenal	hl der nmestellen				Statistik			
			gesamt	Parameter < NG	Minimum	10%- Quantil	25%- Quantil	Median	75%- Quantil	90%- Quantil	Maximum
Wasse	rtemperatur	[°C]	7	0	9,2			10,5			10,8
pH-W	ert (Gelände)		7	0	6,94			7,22			7,54
elektr.	Leitfähigkeit (25 °C)	[µS/cm]	7	0	361,0			752,0			914,0
O ₂ -Ge	halt	[mg/l]	2	0	8,03						9,60
O_2 -Sat	ai	[%]	7	0	6.2			20.0			89,0 77.4
CO ₂ II	61	[IIIg/I]	/	0	0,2			29,0			//,4
F	Fluorid	[mg/l]	7	7	< NG			< NG			< NG
Cl	Chlorid	[mg/l]	7	0	3,82			35,39			70,54
Br	Bromid	[mg/l]	7	7	< NG			< NG			< NG
NO ₃	Nitrat	[mg/l]	7	0	7,21			20,40			40,35
NO ₂	Nitrit	[mg/l]	7	/	< NG			< NG			< NG 20.12
504 PO. ³⁻	Phosphat	[mg/I]	7	7	7,72			22,34			50,15
HCO ₂	Hydrogenkarbonat	[mg/I]	7	0	208.1			366.5			488.4
	vB v v v ute	[8/1]		~	_00,1		1	200,2	1	1	
Na ⁺	Natrium	[mg/l]	7	0	4,437			12,89			22,23
K*	Kalium	[mg/l]	7	0	< BG			2,978			5,163
NH4 ⁺	Ammonium	[mg/l]	7	7	< NG			< NG			< NG
Ca ²⁺	Calcium	[mg/l]	7	0	57,51			103,3			132,1
Mg ⁻	Viagnesium	[mg/l]	7	0	9,808			23,91			28,80
Mn ²⁺	Mangan	[mg/I]	7	6	< NG			< NG			0,9184
Si	Silicium	[mg/l]	7	0	4.43			6.09			7.76
~		[8]			.,			-,			.,
Gesam	tmineralisation	[mg/l]	7	0	307,6			614,8			755,7
Gesam	thärte	[° dH]	7	0	10,3			19,9			25,1
Karbo	nathärte	[° dH]	7	0	9,55			16,82			22,41
Sättigt	ingsindex (Calciumkarbonat)) []/[]]	7	0	-0,58			-0,47			-0,20
Säurol	ipazitat bis pH 8,2	[mmol/1]	7	0	3 /11			6.007			1,70
222Rn	Radon	[IIIII0//I] [Ba/I]	5	1	< NG			15			22
	imuon	[234]/1]	5	•	(110			10			
Ag	Silber	[µg/l]	7	7	< NG			< NG			< NG
Al	Aluminium	[µg/l]	7	1	< NG			5,223			5,859
As	Arsen	[µg/l]	7	0	< BG			0,321			1,505
AU	Gold	[µg/1]	7	0	< NG			< NG			< NG 06.82
Ba	Barium	[µg/1]	7	0	9.62			26.5			135
Be	Bervllium	[µg/1]	7	6	< NG			< NG			< BG
Bi	Wismut	[µg/l]	7	7	< NG			< NG			< NG
Cd	Cadmium	[µg/l]	7	1	< NG			0,016			0,028
Ce	Cer	[µg/l]	7	0	0,015			0,031			0,048
Co	Cobalt	[µg/l]	7	1	< NG			0,079			2,543
Cr	Chrom	[µg/l]	7	2	< NG			0,687			1,998
Cs	Cäsium	[µg/l]	7	0	0,0050			0,0100			0,0700
Cu U-	Kupter	[µg/1]	7	0	0,758			0,868			2,186
ng Le	Lanthan	[µg/1] [µg/1]	7	0	0.0050			0.0080			0.0170
Li	Lithium	[µg/1]	7	0	1,988			2,522			5,848
Мо	Molybdän	[µg/l]	7	0	< BG			0,179			0,720
Ni	Nickel	[µg/l]	7	1	< NG			1,471			14,44
Pb	Blei	[µg/l]	7	1	< NG			0,123			0,450
Rb	Rubidium	[µg/l]	7	0	0,219			0,652			1,911
Sb	Antimon	[µg/l]	7	7	< NG			< NG			< NG
Se	Selen	[µg/l]	7	5	< NG			< NG			< BG
Sn	Zinn	[µg/l]	7	1	< NG			< BG			0,082
Sr	Strontium	[µg/l]	7	0	108			170			239
Th	Thorium	[µg/l]	7	7	< NG			< NG			< NG
	1 nallium Uron	[µg/I]	7	6	< NG			< NG			0,266
v	Vanadium	[µg/1]	7	5	< NG			< NG			+,400 < RG
Y	Yttrium	[μg/1] [μσ/1]	7	0	0.0360			0.0540			0.0970
Zn	Zink	[µg/]]	7	0	2,340			5,005			69,20

Anhang 3-6: Statistische Auswertung der Grundwasseranalysen der Dogger/Malm-Mischwässer.

< NG = kleiner Nachweisgrenze

Mal	m-Thermalwässer										
Param	neter	Einheit	Anza Probenał	hl der 1mestellen				Statistik			
			gesamt	Parameter < NG	Minimum	10%- Quantil	25%- Quantil	Median	75%- Quantil	90%- Quantil	Maximum
Wasse	rtemperatur	[°C]	6	0	17,9			50,4			59,1
pH-W	ert (Gelände)		6	0	6,98			7,24			7,80
elektr.	Leitfahigkeit (25 °C)	[µS/cm]	6	0	1415,0			1648,2			1967,0
O ₂ -Ge	tian	[mg/1] [%]	1	0							
CO ₂ fr	rei	[/0]	6	0	4,4			19,8			34,3
F ⁻	Fluorid	[mg/l]	6	0	4,00			6,75			9,14
Cl	Chlorid	[mg/l]	6	0	142,70			210,20			367,86
Br	Bromid	[mg/l]	6	0	0,92			1,15			3,20
NO ₃	Nitrat	[mg/l]	6	6	< NG			< NG			< NG
NO ₂ ⁻	Nitrit	[mg/l]	6	6	< NG			< NG			< NG
804 PO 3-	Sullat	[mg/I]	6	6	< NG			< BG			δ,41 ∠NG
HCO ₃	Hydrogenkarbonat	[mg/l]	6	0	391,7			566,5			766,4
Na^+	Natrium	[mg/]]	6	0	289.3			324.2			429.6
\mathbf{K}^+	Kalium	[mg/l]	6	0	6,881			13,50			16,18
$\mathbf{NH_4}^+$	Ammonium	[mg/l]	6	5	< NG			< NG			< BG
Ca ²⁺	Calcium	[mg/l]	6	0	6,417			20,82			34,61
Mg ²⁺	Magnesium	[mg/l]	6	0	1,605			4,621			6,610
Fe(tot)	Eisen	[mg/l]	6	2	< NG			0,0260			0,0925
Mn ²⁺	Mangan	[mg/l]	6	0	0,00201			0,00639			0,01057
Si	Silicium	[mg/I]	6	0	6,53			18,34			26,25
Gesan	Itmineralisation	[mg/l]	6	0	1113			1156			1457
Gesan	nthärte	[° dH]	6	0	1,27			3,87			6,36
Karbo	nathärte	[° dH]	6	0	17,98			26,00			35,17
Sättig	ingsindex (Calciumkarbonat)		6	0	-0,33			-0,19			-0,06
Baseka	apazität bis pH 8,2	[mmol/l]	6	0	0,10			0,45			0,78
222Rn	Radon	[mmol/I] [Ba/I]	0	0	0,421			9,280			12,301
Kii	Kauon	[bգ/i]	1	1							
Ag	Silber	[µg/l]	5	5	< NG			< NG			< NG
Al	Aluminium	[µg/l]	6	1	< NG			37,34			312,1
As	Arsen	[µg/l]	6	0	0,165			0,326			9,770
AU	Gold	[µg/1]	5	5	< NG 1073			< NG 1254			< NG 1773
Ba	Barium	[µg/1]	6	0	50.7			1114			152
Be	Bervllium	[µg/1]	6	0	< BG			0,058			0,130
Bi	Wismut	[µg/l]	6	6	< NG			< NG			< NG
Cd	Cadmium	[µg/l]	6	5	< NG			< NG			< BG
Ce	Cer	[µg/l]	5	0	0,016			0,118			0,864
Со	Cobalt	[µg/l]	6	4	< NG			< NG			0,022
Cr	Chrom	[µg/l]	6	2	< NG			< BG			5,560
Cs	Câsium	[µg/l]	6	0	0.150			18,12			33,07
Hø	Ouecksilber	[μg/1] [μσ/1]	6	5	0,150 < NG			0,313 < NG			∠,400 < RG
La	Lanthan	[µg/]]	6	1	< NG			0,0250			0,1760
Li	Lithium	[µg/l]	6	0	150,6			236,6			782,6
Мо	Molybdän	[µg/l]	6	4	< NG			< NG			0,208
Ni	Nickel	[µg/l]	6	3	< NG			< BG			0,204
Pb	Blei	[µg/l]	6	1	< NG			0,160			0,554
Rb	Rubidium	[µg/l]	6	0	26,27			48,56			65,98
Sb	Antimon	[µg/l]	6	5	< NG			< NG			0,230
Se	Zinn	[µg/I]	6	1	< NG			< BG			< BG 0.161
Sr	Strontium	(μg/1) [μσ/1]	6	0	334			441			893
Th	Thorium	[µg/l]	6	2	< NG			0,139			0,359
Tl	Thallium	[µg/l]	6	1	< NG			0,082			0,105
U	Uran	[µg/l]	6	1	< NG			0,0070			0,0440
V	Vanadium	[µg/l]	6	1	< NG			0,288			2,900
Y	Yttrium	[µg/l]	6	0	0,0290			0,0510			0,0850
Zn	Zink	[µg/l]	6	0	0,351			1,145			3,010

Anhang 3-7: Statistische Auswertung der Grundwasseranalysen der Malm-Thermalwässer.

< NG = kleiner Nachweisgrenze

Oberf	lächennahes Kristalliı	n									
Paramete	er	Einheit	Anza Probenal	hl der nmestellen				Statistik			
			gesamt	Parameter < NG	Minimum	10%- Quantil	25%- Quantil	Median	75%- Quantil	90%- Quantil	Maximum
Wasserte	emperatur	[°C]	42	0	4,4	5,4	6,2	8,1	9,6	10,6	13,7
pH-Wert	(Gelände)		42	0	4,35	4,91	5,30	5,66	6,10	6,30	6,50
elektr. Le	eitfähigkeit (25 °C)	[µS/cm]	42	0	17,4	20,8	23,3	31,3	50,8	98,9	145,0
O ₂ -Gehal	lt	[mg/I]	40	0	6,30	7,08	9,19	9,70	10,35	10,93	11,35
CO. frei	gung	[%]	40	0	1.3	3.5	53	92,0	90,9	26.4	62.5
co ₂ nd		[115/1]	71	0	1,5	5,5	5,5	15,2	17,0	20,4	02,5
F F	luorid	[mg/l]	42	37	< NG	< NG	< NG	< NG	< NG	< BG	< BG
CF C	Chlorid	[mg/l]	42	8	< NG	< NG	< BG	< BG	< BG	7,07	30,96
Br B	litrat	[mg/l]	42	40	< NG	< NG	< NG	< NG	< NG 5.26	< NG 0.26	< BG
NO ₃ N	Jitrit	[IIIg/I]	42	42	< NG	< bG	< bG	< bG	5,20	9,20	52,69
SO_4^2 S	ulfat	[mg/l]	42	15	< NG	< NG	< NG	< BG	< BG	8.48	18.76
PO ₄ ³⁻ P	hosphat	[mg/l]	42	42	< NG	< NG	<ng< th=""><th>< NG</th><th>< NG</th><th>< NG</th><th>< NG</th></ng<>	< NG	< NG	< NG	< NG
HCO ₃ H	Iydrogenkarbonat	[mg/l]	42	9	< NG	< NG	< BG	5,3	8,5	17,1	31,0
Nc ⁺	Intuinm	f /11	40	0	< DC	0.720	0.000	1.000	2.225	1 470	17.72
Na N K ⁺ V	atrium Calium	[mg/l]	42	0	< BG	0,/29	0,960	1,269	2,226	4,479	17,73
NH ⁺ A	Ammonium	[mg/1]	42	42	< NG	< NG	< NG	< NG	< NG	< NG	< NG
Ca^{2+}	Calcium	[mg/l]	42	3	< NG	< BG	0.475	1.713	2.504	8.487	11.99
Mg ²⁺ N	lagnesium	[mg/l]	42	0	< BG	< BG	0,294	0,589	1,052	2,184	3,357
Fe(tot) E	lisen	[mg/l]	42	27	< NG	< NG	< NG	< NG	< BG	0,0189	0,3880
Mn ²⁺ N	langan	[mg/l]	39	0	0,00047	0,00065	0,00120	0,00230	0,01220	0,02076	0,1262
Si S	ilicium	[mg/l]	39	0	< BG	2,17	2,81	3,54	4,62	6,49	8,93
Gesamtr	nineralisation	[mg/]]	42	0	7.181	10.72	14.19	21.90	34.68	60.47	95.03
Gesamth	ärte	["dH]	36	0	0.089	0.110	0.232	0.402	0.750	1.77	2.32
Karbona	thärte	[° dH]	42	9	< NG	< NG	< BG	0,25	0,39	0,78	1,42
Sättigung	gsindex (Calciumkarbonat)		31	0	-7,70	-6,58	-6,00	-5,08	-4,57	-4,08	-3,22
Basekapa	azität bis pH 8,2	[mmol/l]	41	0	0,03	0,08	0,12	0,30	0,40	0,60	1,42
Säurekap	pazität bis pH 4,3	[mmol/l]	40	7	< NG	< NG	< BG	0,090	0,143	0,280	0,507
²²² Rn R	ladon	[Bq/l]	24	2	< NG	10	23	65	145	185	395
Ag S	ilber	[µg/l]	32	22	< NG	< NG	< NG	< NG	< BG	< BG	< BG
Al A	luminium	[µg/l]	41	2	< NG	6,644	10,22	44,76	149,0	277,0	769,0
As A	arsen	[µg/l]	42	15	< NG	< NG	< NG	< BG	0,074	0,179	1,200
Au G	fold	[µg/l]	32	25	< NG	< NG	< NG	< NG	< NG	< BG	0,076
B B	lor	[µg/l]	42	19	< NG	< NG	< NG	< BG	3,472	12,75	27,10
Ba B	arium	[µg/I]	42	2	< NG	2,48	3,67	6,25	14,6	40,1	201
Bi V	Vismut	[µg/1]	39	2	< NG	< NG	< NG	0,098	< BG	0,274	0,483
Cd C	ladmium	[µg/1]	39	3	< NG	< BG	0.015	0.039	0.076	0.132	0.297
Ce C	Cer	[µg/l]	42	0	< BG	0,014	0,024	0,103	0,408	1,308	10,91
Co C	Cobalt	[µg/l]	39	1	< NG	0,012	0,021	0,033	0,087	0,434	2,651
Cr C	Chrom	[µg/l]	39	15	< NG	< NG	< NG	< BG	0,317	0,428	0,768
Cs C	läsium	[µg/l]	42	2	< NG	0,0011	0,0050	0,0112	0,0168	0,0367	0,1540
Cu K	upfer	[µg/l]	39	6	< NG	< NG	0,142	0,486	1,070	1,606	3,144
ng Q	anthan	[µg/I]	32	20	< NG 0.0030	< NG 0.0156	< NG 0.0255	< NG 0.0610	< BG	2.062	5.940
Li L	ithium	[μg/1] [μg/]]	42	0	0,106	0.199	0.341	0.629	0,930	1,607	5,102
Mo N	Iolybdän	[µg/l]	39	37	< NG	< NG	< NG	< NG	< NG	< NG	< BG
Ni N	lickel	[µg/l]	39	9	< NG	< NG	< BG	0,267	0,499	0,622	1,451
Pb B	Blei	[µg/l]	42	14	< NG	< NG	< NG	0,072	0,158	0,380	1,210
Rb R	Rubidium	[µg/l]	42	0	0,325	0,390	0,708	1,168	1,577	2,754	4,586
Sb A	Intimon	[µg/l]	39	18	< NG	< NG	< NG	< BG	0,015	0,024	0,049
Se S	elen	[µg/l]	32	30	< NG	< NG	< NG	< NG	< NG	< NG	4,839
Sn Z	400 trontium	[µg/1]	39 42	16	< NG 4.42	< NG	< NG	< BG	0,052	0,089	0,263
Th T	Thorium	[μg/1] [μσ/1]	30	30	+,+5 < NG	< NG	< NG	∠1,1 < NG	< NG	< BG	0.017
TI T	hallium	[µg/]]	39	32	< NG	< NG	<ng< th=""><th>< NG</th><th>< NG</th><th>< BG</th><th>0.026</th></ng<>	< NG	< NG	< BG	0.026
UU	Jran	[µg/l]	42	0	0,0020	0,0030	0,0043	0,0085	0,0228	0,0327	0,1970
v v	anadium	[µg/l]	39	18	< NG	< NG	< NG	< BG	0,089	0,291	4,636
Y Y	7ttrium	[µg/l]	42	0	0,0310	0,0441	0,0773	0,1495	0,4355	1,708	4,813
Zn Z	link	[µg/l]	39	1	< NG	0,531	1,268	1,929	5,050	6,808	23,49

Anhang 3-8: Statistische Auswertung der Grundwasseranalysen aus dem oberflächennahen Kristallin.

< NG = kleiner Nachweisgrenze

Tekt	onite/Ganggesteine										
Param	eter	Einheit	Anza Probenal	hl der mestellen			-	Statistik	-		-
			gesamt	Parameter < NG	Minimum	10%- Quantil	25%- Quantil	Median	75%- Quantil	90%- Quantil	Maximum
Wasser	rtemperatur	[°C]	18	0	6,2	6,5	8,7	9,6	10,0	10,7	11,0
pH-We	ert (Gelände)		18	0	5,72	5,78	5,84	5,94	6,04	6,30	6,51
elektr.	Leitfähigkeit (25 °C)	[µS/cm]	18	0	30,0	43,4	67,7	129,0	194,9	251,3	285,0
O ₂ -Gel	tigung	[mg/I]	17	0	4,70	5,54 48.3	7,10	8,60	92.0	10,28 95.4	11,20
CO_2 fr	ei	[70]	18	0	15.8	17.6	20.9	28.6	43.6	47.9	62.5
-		[8]					;-			,,,	,-
F	Fluorid	[mg/l]	18	18	< NG	< NG	< NG	< NG	< NG	< NG	< NG
CI Br	Bromid	[mg/l]	18	18	< BG	< BG	< BG < NG	7,22	52,92 < NG	42,15	57,48 < NG
NO ₃	Nitrat	[mg/l]	18	2	< NG	< BG	< BG	7,63	12,28	31,31	34,94
NO ₂ ⁻	Nitrit	[mg/l]	18	18	< NG	< NG	< NG	< NG	< NG	< NG	< NG
SO4 ²⁻	Sulfat	[mg/l]	18	5	< NG	< NG	< NG	< BG	7,93	10,85	15,22
PO ₄ ³⁻	Phosphat	[mg/l]	18	18	< NG	< NG	< NG	< NG	< NG	< NG	< NG
HCO ₃ .	Hydrogenkarbonat	[mg/l]	18	0	9,2	10,9	12,2	19,5	25,6	35,8	41,5
Na ⁺	Natrium	[mg/l]	18	0	1,476	2,053	2,711	4,843	9,749	13,61	20,09
\mathbf{K}^+	Kalium	[mg/l]	18	0	< BG	0,588	0,645	1,033	1,352	1,866	2,440
NH4 ⁺	Ammonium	[mg/l]	18	18	< NG	< NG	< NG	< NG	< NG	< NG	< NG
Ca ²⁺	Calcium	[mg/l]	18	0	1,919	2,213	3,161	9,808	15,17	16,69	17,10
Mg ²	Magnesium	[mg/l]	18	0	0,6//	0,702	0,994	3,059	4,518	4,788	5,447
Mn ²⁺	Mangan	[mg/l]	18	0	0.00003	0.00008	0.00014	0.00060	0.00124	0.00183	0.00461
Si	Silicium	[mg/l]	18	0	5,33	5,95	6,71	7,98	10,64	12,90	13,65
C	, , , ,	r (1)	10	0	07.15	20.07	26.27	02.57	110.5	107.6	124.6
Gesam	tmineralisation	[mg/I]	18	0	27,15	30,87	36,37	93,57	2 16	127,6	134,6
Karbo	nathärte	[° dH]	18	0	0.424	0,470	0,000	0.90	1.18	1.64	1.90
Sättigu	ngsindex (Calciumkarbonat)	լաոյ	18	0	-5,09	-4,82	-4,38	-3,90	-3,59	-3,24	-3,12
Baseka	pazität bis pH 8,2	[mmol/l]	18	0	0,36	0,40	0,48	0,65	0,99	1,09	1,42
Säurek	apazität bis pH 4,3	[mmol/l]	18	0	0,150	0,180	0,200	0,320	0,420	0,585	0,680
²²² Rn	Radon	[Bq/l]	15	1	< NG	13	27	43	96	176	376
Ag	Silber	[µg/l]	18	12	< NG	< NG	< NG	< NG	< BG	< BG	0,013
Al	Aluminium	[µg/l]	18	4	< NG	< NG	< BG	2,511	18,78	82,46	279,1
As	Arsen	[µg/l]	18	11	< NG	< NG	< NG	< NG	0,069	0,236	0,997
Au	Gold	[µg/l]	18	15	< NG	< NG	< NG	< NG	< NG	0,040	0,068
B	Bor	[µg/l]	18	9	< NG	< NG	< NG	< BG	4,932	16,73	56,11
Da Be	Beryllium	[µg/1]	18	4	< NG	< NG	0,93 < BG	9,33 < BG	40,0	0.085	0.135
Bi	Wismut	[µg/l]	18	14	< NG	< NG	< NG	< NG	< NG	< BG	< BG
Cd	Cadmium	[µg/l]	18	2	< NG	< BG	0,010	0,016	0,111	0,302	0,380
Ce	Cer	[µg/l]	18	0	< BG	0,011	0,022	0,053	0,183	0,232	1,277
Co	Cobalt	[µg/l]	18	0	< BG	< BG	0,006	0,017	0,029	0,044	0,051
Cr	Chrom	[µg/l]	18	7	< NG	< NG	< NG	< BG	0,399	0,519	1,060
Cu	Kunfer	[μg/1] [πσ/1]	10	0	0.082	0.152	0.232	0.502	0.736	2,949	5.681
Hg	Quecksilber	[µg/l]	18	16	< NG	< NG	< NG	< NG	< NG	< NG	0,061
La	Lanthan	[µg/l]	18	0	0,0030	0,0064	0,0113	0,0195	0,0445	0,0579	0,2660
Li	Lithium	[µg/l]	18	0	0,497	0,675	1,142	1,838	4,336	6,499	8,674
Mo	Molybdän	[µg/l]	18	16	< NG	< NG	< NG	< NG	< NG	< NG	0,288
Ni Dh	Nickel	[µg/l]	18	3	< NG	< NG	< BG	0,659	1,269	1,870	3,130
PD	Biel	[µg/1]	18	3	< NG	< NG	< NG 0.137	< NG 0.500	0,020	4,090	6 389
Sb	Antimon	[μg/1]	18	17	< NG	< NG	<ng< th=""><th>< NG</th><th>< NG</th><th>< NG</th><th>0,009</th></ng<>	< NG	< NG	< NG	0,009
Se	Selen	[µg/l]	18	11	< NG	< NG	< NG	< NG	< BG	< BG	< BG
Sn	Zinn	[µg/l]	18	12	< NG	< NG	< NG	< NG	< BG	0,070	0,108
Sr	Strontium	[µg/l]	18	0	16,4	24,0	28,7	34,6	71,6	95,2	107
Th	Thorium	[µg/l]	18	16	< NG	< NG	< NG	< NG	< NG	< NG	< BG
TI	Thallium	[µg/l]	18	14	< NG	< NG	< NG	< NG	< NG	0,032	0,083
v	Uran Vanadium	[µg/I]	18	11	< NG	< NG	0,0073	0,0155	0,0253	0,0894	0,6720
Y	Yttrium	[μg/1] [μσ/]]	18	0	0.0130	0.0196	0.0360	0.0795	0.1395	0.2470	0,492
Zn	Zink	[µg/l]	18	1	< NG	< BG	1,097	5,483	13,35	18,94	38,39

Anhang 3-9: Statistische Auswertung der Grundwasseranalysen aus den Tektoniten bzw. Ganggesteinen des Kristallinen Grundgebirges.

< NG = kleiner Nachweisgrenze

Zn

< BG = kleiner Bestimmungsgrenze

Saure bis intermediäre Plutonite											
Param	eter	Einheit	Anza Probenał	hl der mestellen	en Statistik						
			gesamt	Parameter < NG	Minimum	10%- Quantil	25%- Quantil	Median	75%- Quantil	90%- Quantil	Maximum
Wasse	rtemperatur	[°C]	231	0	4,4	6,3	7,1	8,2	9,1	10,2	14,6
pH-We	ert (Gelände)		231	0	4,50	5,30	5,56	5,85	6,08	6,27	7,10
elektr.	Leitfähigkeit (25 °C)	[µS/cm]	231	0	17,0	31,0	40,2	63,0	120,0	190,0	296,0
O ₂ -Gel	halt 	[mg/l]	198	0	2,70	7,87	9,03	9,70	10,40	11,04	12,30
CO fr	oi	[%]	201	0	24,7	74,0	84,5 12.9	90,2	97,0	100,0	112,0
CO ₂ II	ci	[iiig/i]	220	0	5,5	7,9	12,0	18,0	27,1	42,9	172,5
F ⁻	Fluorid	[mg/l]	231	221	< NG	< NG	< NG	< NG	< NG	< NG	< BG
Cl	Chlorid	[mg/l]	231	7	< NG	< BG	< BG	1,55	6,81	17,79	58,20
Br ⁻	Bromid	[mg/l]	231	231	< NG	< NG	< NG	< NG	< NG	< NG	< NG
NO ₃	Nitrat	[mg/l]	231	39	< NG	< NG	< BG	4,84	9,50	21,64	69,66
NO ₂	Nitrit	[mg/l]	231	228	< NG	< NG	< NG	< NG	< NG	< NG	< BG
SO4 ²	Sulfat	[mg/l]	231	36	< NG	< NG	< BG	7,60	11,96	16,36	37,60
PO ₄	Phosphai	[mg/I]	231	231	< NG	< NG	< NG 7.0	< NG	< NG 21.1	< NG 25.4	< NG 125.1
HCO ₃	nyurogenkarbonat	[IIIg/1]	231	4	< NG	< DO	7,9	12,0	21,1	55,4	123,1
Na ⁺	Natrium	[mg/l]	231	0	< BG	1,516	2,162	4,137	6,739	10,00	25,00
\mathbf{K}^+	Kalium	[mg/l]	231	44	< NG	< NG	0,272	0,602	1,086	1,900	4,674
NH4 ⁺	Ammonium	[mg/l]	231	230	< NG	< NG	< NG	< NG	< NG	< NG	< BG
Ca ²⁺	Calcium	[mg/l]	231	0	0,800	1,716	2,833	4,786	9,921	16,55	45,59
Mg ²⁺	Magnesium	[mg/l]	231	0	< BG	0,425	0,603	1,019	2,086	3,659	12,02
Fe(tot)	Eisen	[mg/l]	231	188	< NG	< NG	< NG	< NG	< NG	< BG	0,7441
Mn ⁻	Nangan	[mg/l]	223	2	< NG 2.63	3.80	5.22	7.38	0,00416	12.06	0,08628
51	Sincium	[mg/1]	223	0	2,05	5,60	3,23	7,50	8,90	12,00	19,27
Gesam	tmineralisation	[mg/l]	231	0	16,32	22,18	31,05	46,52	82,11	122,8	236,1
Gesam	thärte	[° dH]	231	0	0,158	0,349	0,540	0,844	1,86	3,20	7,24
Karbo	nathärte	[° dH]	231	4	< NG	< BG	0,36	0,59	0,97	1,62	5,74
Sättigu	ingsindex (Calciumkarbonat)		231	0	-8,63	-5,73	-5,10	-4,52	-3,88	-3,36	-1,57
Baseka	pazität bis pH 8,2	[mmol/l]	226	0	0,08	0,18	0,29	0,41	0,62	0,98	3,92
Saurek 222Dn	apazitat bis pH 4,3	[mmol/l]	231	4	< NG	0,080	0,129	0,210	0,345	0,579	2,050
KI	Kauon	[Dq/1]	222	1	< NG	30	11	146	270	363	1120
Ag	Silber	[µg/l]	197	172	< NG	< NG	< NG	< NG	< NG	< BG	0,103
Al	Aluminium	[µg/l]	230	20	< NG	1,202	5,929	17,22	43,54	142,8	1184
As	Arsen	[µg/l]	231	146	< NG	< NG	< NG	< NG	0,074	0,193	1,512
Au	Gold	[µg/l]	197	190	< NG	< NG	< NG	< NG	< NG	< NG	< BG
B	Bor	[µg/I]	231	95	< NG	< NG	< NG	< BG	3,913	9,528	71,74
Ba D-	Barium	[µg/I]	231	48	< NG	< NG	1,40	7,85	19,1	38,5	305
Bi	Wismut	[µg/1]	231	14	< NG	< bG	< bG	0,099	0,321	0,710	0.237
Cd	Cadmium	[μg/1] [μσ/]]	223	18	< NG	< BG	0.012	0.029	0.062	0.131	0,237
Ce	Cer	[µg/1]	229	10	< NG	0.034	0.092	0,029	0,002	1,169	27.22
Co	Cobalt	[µg/l]	223	2	< NG	0,006	0,010	0,016	0,035	0,097	0,553
Cr	Chrom	[µg/l]	223	113	< NG	< NG	< NG	< NG	0,204	0,386	12,09
Cs	Cäsium	[µg/l]	231	85	< NG	< NG	< NG	0,0030	0,0140	0,0450	0,9480
Cu	Kupfer	[µg/l]	223	15	< NG	< BG	0,189	0,340	0,650	1,109	77,90
Hg	Quecksilber	[µg/l]	198	185	< NG	< NG	< NG	< NG	< NG	< NG	0,593
La	Lanthan	[µg/l]	223	2	< NG	0,0122	0,0240	0,0510	0,1140	0,4162	40,20
Li	Lithium	[µg/I]	231	0	0,060	0,383	0,737	1,577	3,521	6,299	22,20
MO	Molybdan	[µg/1]	223	163	< NG	< NG	< NG	< NG	< BG	0,088	5.087
Pb	Rlei	[µg/1]	223	49	< NG	< NG		0,202	0,498 < RG	0.152	2,907
Rb	Ruhidium	[μg/1] [μσ/]]	231	140	< NG	0.087	0.340	0.732	1 352	2.230	5 713
Sb	Antimon	[μg/1] [μσ/]]	223	199	< NG	< NG	<ng< th=""><th>< NG</th><th><ng< th=""><th><bg< th=""><th>0.058</th></bg<></th></ng<></th></ng<>	< NG	<ng< th=""><th><bg< th=""><th>0.058</th></bg<></th></ng<>	<bg< th=""><th>0.058</th></bg<>	0.058
Se	Selen	[µg/]]	198	190	< NG	< NG	< NG	< NG	< NG	< NG	< BG
Sn	Zinn	[ug/]]	223	190	< NG	< NG	< NG	< NG	< NG	< BG	0,456
Sr	Strontium	[µg/l]	231	0	4,39	12,3	18,4	28,7	60,9	93,3	228
Th	Thorium	[µg/l]	223	181	< NG	< NG	< NG	< NG	< NG	< BG	0,076
Tl	Thallium	[µg/l]	223	160	< NG	< NG	< NG	< NG	< BG	0,007	0,034
U	Uran	[µg/l]	231	1	< NG	0,0070	0,0205	0,0570	0,1575	0,3750	2,441
V	Vanadium	[µg/l]	223	145	< NG	< NG	< NG	< NG	0,107	0,478	1,470
Y	Yttrium	[µg/l]	231	0	0,0090	0,0504	0,0940	0,1670	0,3310	1,012	32,70
Zn	Zink	[µg/l]	223	26	< NG	< NG	0,357	0,951	2,010	5,819	125,3

Anhang 3-10: Statistische Auswertung der Grundwasseranalysen aus den sauren bis intermediären Plutoniten des Kristallinen Grundgebirges.

< NG = kleiner Nachweisgrenze

Anhang 3-11: Statistische	Auswertung der	Grundwasseranalysen	aus den	Ultrametamorphiten	des Kristallinen
Grundgebirges.					

Ultrametamorphite											
Param	eter	Einheit	Anza Probenał	hl der mestellen	Statistik						
			gesamt	Parameter < NG	Minimum	10%- Quantil	25%- Quantil	Median	75%- Quantil	90%- Quantil	Maximum
Wasse	rtemperatur	[°C]	112	0	6,0	7,2	8,0	9,1	10,5	12,7	16,0
pH-We	ert (Gelände)	1.01.2	112	0	5,19	5,73	5,90	6,09	6,44	6,62	8,15
elektr.	Leitfahigkeit (25 °C)	[µS/cm]	112	0	23,9	47,1	74,5	109,0	145,5	194,9	323,0
O ₂ -Gel	tigung	[mg/1]	108	0	2,00	63.1	8,08 78.0	9,18	9,90	10,50	12,60
C_2 -Sat	ei	[70] [mg/l]	110	0	20,0	9.6	15.5	22.9	32.6	44.0	64.2
0021	~	[110		2,0	>,0	10,0	22,7	52,6	. 1,0	01,2
F ⁻	Fluorid	[mg/l]	112	107	< NG	< NG	< NG	< NG	< NG	< NG	< BG
Cl	Chlorid	[mg/l]	112	1	< NG	< BG	1,68	3,28	5,88	10,74	30,83
Br NO :	Bromid	[mg/l]	112	112	< NG	< NG	< NG	< NG	< NG 15.07	< NG	< NG 44.79
NO ₃	Nitrit	[mg/I]	112	112	< NG	< NG	4,40	0,79	< NG	< NG	< NG
SQ4 ²⁻	Sulfat	[mg/l]	112	4	< NG	< BG	7.53	10.90	15.07	20.50	29.14
PO4 ³	Phosphat	[mg/l]	112	112	< NG	< NG	< NG	< NG	< NG	< NG	< NG
HCO ₃	Hydrogenkarbonat	[mg/l]	112	0	< BG	10,4	15,9	24,4	40,0	67,7	129,4
No ⁺	Natrium	[ma/l]	112	0	1.622	2 560	3.840	5 700	7 512	0.042	12 22
INA K ⁺	Kalium	[mg/1] [mg/1]	112	7	1,022 < NG	2,309 < BG	0.627	1 231	1,512	2 383	12,32
NH4 ⁺	Ammonium	[mg/l]	112	112	< NG	< NG	<ng< th=""><th>< NG</th><th>< NG</th><th>< NG</th><th>< NG</th></ng<>	< NG	< NG	< NG	< NG
Ca ²⁺	Calcium	[mg/l]	112	0	1,300	3,824	6,966	9,630	13,49	20,47	32,17
Mg^{2+}	Magnesium	[mg/l]	112	0	0,393	0,864	1,523	2,282	3,519	5,975	10,76
Fe(tot)	Eisen	[mg/l]	112	86	< NG	< NG	< NG	< NG	< NG	< BG	0,5542
Mn ²⁺	Mangan	[mg/l]	106	13	< NG	< NG	0,00016	0,00044	0,00135	0,00754	0,05867
Si	Silicium	[mg/l]	106	0	3,80	5,65	6,92	8,92	11,91	13,79	16,08
Gesam	tmineralisation	[mg/l]	112	0	19,28	38,89	57,63	79,15	113,0	167,9	232,9
Gesam	thärte	[° dH]	112	0	0,320	0,760	1,30	1,95	2,60	4,27	6,97
Karbo	nathärte	[° dH]	112	0	< BG	0,48	0,73	1,12	1,83	3,11	5,94
Sättigu	ngsindex (Calciumkarbonat)		112	0	-6,03	-4,53	-4,22	-3,63	-3,12	-2,53	-0,40
Baseka	pazität bis pH 8,2	[mmol/l]	110	0	0,06	0,22	0,35	0,52	0,74	1,00	1,46
Säurek 222 Dr	apazität bis pH 4,3	[mmol/l]	104	0	< BG	0,172	0,260	0,400	0,655	1,110	2,120
KI	Kauon	[נ/אַם]	104	2	< NO	10	31	33	07	105	298
Ag	Silber	[µg/l]	95	84	< NG	< NG	< NG	< NG	< NG	< BG	0,547
Al	Aluminium	[µg/l]	112	18	< NG	< NG	3,113	7,533	17,00	82,25	309,0
As	Arsen	[µg/l]	112	68	< NG	< NG	< NG	< NG	0,070	0,145	0,560
AU	Gold	[µg/1]	95	89 47	< NG	< NG	< NG	< NG	< NG 5.003	< NG 11.26	22.10
Ba	Barium	[µg/1]	112	15	< NG	< NG	4.01	17.8	36.3	68.8	251
Be	Bervllium	[µg/l]	112	30	< NG	< NG	<ng< th=""><th>< BG</th><th>0,064</th><th>0,092</th><th>0,181</th></ng<>	< BG	0,064	0,092	0,181
Bi	Wismut	[µg/l]	106	61	< NG	< NG	< NG	< NG	< BG	0,030	0,544
Cd	Cadmium	[µg/l]	106	15	< NG	< NG	< BG	0,013	0,028	0,059	0,518
Ce	Cer	[µg/l]	112	1	< NG	0,017	0,050	0,113	0,292	0,544	2,316
Co	Cobalt	[µg/l]	106	3	< NG	0,007	0,011	0,019	0,032	0,065	0,434
Cr	Casium	[µg/I]	106	44	< NG	< NG	< NG	< BG	0,251	0,409	0.9610
Cu	Kupfer	[µg/1] [µg/]]	106	5	< NG	0.123	0.211	0,390	1,316	4,273	21.44
Hg	Quecksilber	[µg/l]	95	80	< NG	< NG	< NG	< NG	< NG	< BG	0,348
La	Lanthan	[µg/l]	106	0	0,0010	0,0090	0,0183	0,0340	0,0860	0,1785	0,7790
Li	Lithium	[µg/l]	112	0	0,046	0,357	0,836	2,147	4,293	7,789	31,76
Mo	Molybdän	[µg/l]	106	52	< NG	< NG	< NG	< BG	0,075	0,427	2,643
Ni	Nickel	[µg/l]	106	15	< NG	< NG	< BG	0,500	1,003	1,712	4,640
Pb	Biel	[µg/I]	112	15	< NG	< NG	< NG	< NG	< BG	0,153	2,867
KD Sb	Antimon	[µg/1]	112	11 84	< NG	< 80	0,145 < NG	0,359 < NG	0,959 < NG	1,780	12,/4
Se	Selen	[µg/1]	95	85	< NG	< NG	<ng< th=""><th>< NG</th><th>< NG</th><th>< NG</th><th>< BG</th></ng<>	< NG	< NG	< NG	< BG
Sn	Zinn	[µg/l]	106	71	< NG	< NG	< NG	< NG	< BG	< BG	0,085
Sr	Strontium	[µg/l]	112	0	11,5	30,7	49,9	70,7	92,0	141	379
Th	Thorium	[µg/l]	106	75	< NG	< NG	< NG	< NG	< BG	0,015	0,057
Tl	Thallium	[µg/l]	106	82	< NG	< NG	< NG	< NG	< NG	0,005	0,070
U	Uran	[µg/l]	112	0	0,0020	0,0040	0,0070	0,0160	0,0433	0,1133	1,802
V	Vanadium	[µg/l]	106	36	< NG	< NG	< NG	< BG	0,380	0,815	1,963
Y	Yttrium	[µg/l]	112	0	0,0100	0,0321	0,0530	0,1048	0,1833	0,2727	2,010
Zn	LINK	[µg/I]	106	14	< NG	< NG	0,375	1,287	4,267	9,052	115,0

< NG = kleiner Nachweisgrenze

ſ

Saure bis intermediäre Metamorphite										
Parameter Einheit		Anzahl der Probenahmestellen		Statistik						
		gesamt	Parameter < NG	Minimum	10%- Quantil	25%- Quantil	Median	75%- Quantil	90%- Quantil	Maximum
Wassertemperatur	[°C]	381	0	4,5	6,0	6,8	7,6	8,6	9,8	14,7
pH-Wert (Gelände)		381	0	4,57	5,51	5,72	5,97	6,15	6,40	7,30
elektr. Leitfähigkeit (25 °C) [µS/cm]	381	0	17,0	26,0	34,0	52,0	89,2	176,0	497,0
O ₂ -Gehalt	[mg/l]	321	0	5,04	7,95	8,90	9,90	10,60	11,00	12,00
O ₂ -Sättigung	[%]	324	0	44,6	73,4	83,0	92,0	97,1	100,0	114,0
CO ₂ frei	[mg/l]	377	0	2,6	8,8	12,3	17,6	26,4	36,1	95,0
F Fluorid	[mg/l]	381	341	< NG	< NG	< NG	< NG	< NG	< BG	< BG
Cl ⁻ Chlorid	[mg/l]	381	8	< NG	< BG	< BG	< BG	4,42	16,98	58,90
Br ⁻ Bromid	[mg/l]	381	380	< NG	< NG	< NG	< NG	< NG	< NG	< BG
NO ₃ Nitrat	[mg/l]	381	52	< NG	< NG	< BG	< BG	6,54	19,73	52,20
NO ₂ Nitrit	[mg/l]	381	377	< NG	< NG	< NG	< NG	< NG	< NG	< BG
SO ₄ ² Sulfat	[mg/l]	381	132	< NG	< NG	< NG	< BG	7,14	12,32	34,31
PO ₄ Phosphat	[mg/l]	381	381	< NG	< NG	< NG	< NG	< NG	< NG	< NG
HUU3 HyurogenkarDonat	[mg/1]	381	U	< RA	0,1	8,3	15,4	21,4	33,0	221,5
Na ⁺ Natrium	[mg/l]	381	0	< BG	1,276	1,723	2,702	4,828	8,108	22,67
K ⁺ Kalium	[mg/l]	381	6	< NG	0,419	0,541	0,749	1,047	1,693	4,810
NH4 ⁺ Ammonium	[mg/l]	381	381	< NG	< NG	< NG	< NG	< NG	< NG	< NG
Ca ²⁺ Calcium	[mg/l]	381	0	< BG	1,553	2,124	3,466	7,553	14,52	59,30
Mg ²⁺ Magnesium	[mg/l]	381	3	< NG	0,516	0,695	1,003	2,109	3,753	16,88
Fe(tot) Eisen	[mg/l]	381	280	< NG	< NG	< NG	< NG	< BG	< BG	0,1300
Mn ²⁺ Mangan	[mg/l]	361	22	< NG	0,00005	0,00023	0,00062	0,00197	0,00504	0,08097
Si Silicium	[mg/I]	302	0	< BG	3,33	4,44	0,38	8,05	10,98	14,84
Gesamtmineralisation	[mg/l]	381	0	12,57	21,08	25,59	38,40	68,81	114,7	350,6
Gesamthärte	[° dH]	381	0	0,141	0,348	0,468	0,730	1,61	2,91	11,5
Karbonathärte	[° dH]	381	0	< BG	0,28	0,39	0,62	0,98	1,54	10,16
Sättigungsindex (Calciumkarbonat)		380	0	-7,52	-5,54	-5,04	-4,42	-3,86	-3,38	-1,02
Basekapazität bis pH 8,2 [r	nmol/l]	377	0	0,06	0,20	0,28	0,40	0,60	0,82	2,16
Säurekapazität bis pH 4,3 [r	nmol/l]	381	1	< NG	0,100	0,140	0,221	0,350	0,550	3,630
Kn Kadon	[вq/1]	321	1	< NG	10	27	51	89	144	407
Ag Silber	[µg/l]	310	258	< NG	< NG	< NG	< NG	< NG	< BG	0,242
Al Aluminium	[µg/l]	380	62	< NG	< NG	1,974	7,778	27,53	67,31	1063
As Arsen	[µg/l]	380	219	< NG	< NG	< NG	< NG	0,063	0,115	1,000
Au Gold	[µg/l]	310	288	< NG	< NG	< NG	< NG	< NG	< NG	0,104
B Bor	[µg/I]	380	179	< NG	< NG	< NG	< BG	3,361	8,433	152,1
Ba Barium Ba Barilium	[µg/1]	380	83 128	< NG	< NG	0,75	4,34	12,7	30,0	203
Bi Wismut	[µg/1]	361	302	< NG	< NG	< NG	< NG	< NG	0,093	0,959
Cd Cadmium	[µg/1]	361	56	< NG	< NG	< BG	0.014	0.030	0.059	1.094
Ce Cer	[µg/l]	380	6	< NG	0,007	0,018	0,047	0,146	0,353	6,532
Co Cobalt	[µg/l]	361	8	< NG	0,004	0,008	0,013	0,026	0,058	2,298
Cr Chrom	[µg/l]	361	160	< NG	< NG	< NG	< BG	0,246	0,442	3,450
Cs Cäsium	[µg/l]	380	105	< NG	< NG	< NG	0,0030	0,0081	0,0206	0,7870
Cu Kupfer	[µg/l]	361	47	< NG	< NG	0,097	0,232	0,612	1,347	76,57
Hg Quecksilber	[µg/l]	310	286	< NG	< NG	< NG	< NG	< NG	< NG	0,064
La Lanthan	[µg/1]	301	1	< NG	0.244	0,0090	0,0220	2 012	4 822	1,775
Mo Molybdän	[μg/1] [μσ/1]	361	308	< NG	< NG	< NG	< NG	< NG	4,023	0.297
Ni Nickel	[µg/l]	361	67	< NG	< NG	< BG	0,221	0,501	1,162	22.96
Pb Blei	[µg/l]	380	254	< NG	< NG	< NG	< NG	< BG	0,112	3,061
Rb Rubidium	[µg/l]	380	31	< NG	< BG	0,168	0,420	0,825	1,389	5,831
Sb Antimon	[µg/l]	361	312	< NG	< NG	< NG	< NG	< NG	< BG	0,055
Se Selen	[µg/l]	310	281	< NG	< NG	< NG	< NG	< NG	< NG	< BG
Sn Zinn	[µg/l]	361	260	< NG	< NG	< NG	< NG	< BG	0,062	0,249
Sr Strontium	[µg/l]	380	0	5,66	14,6	18,4	27,4	47,7	98,7	194
Th Thorium	[µg/l]	361	327	< NG	< NG	< NG	< NG	< NG	< NG	0,025
TI Thallium	[µg/l]	361	299	< NG	< NG	< NG	< NG	< NG	< BG	0,031
U Uran	[µg/l]	380	8	< NG	0,0020	0,0040	0,0090	0,0190	0,0460	0,3450
v vanadium V Vttrium	[µg/1]	280	201	< NG	< NG	< NG 0.0219	< NG	0,191	0,413	1,139
Zn Zink	[μg/1] [μg/1]	361	50	< NG	< NG	0,0318	1.053	2,663	7.515	417.6

Anhang 3-12: Statistische Auswertung der Grundwasseranalysen aus den sauren bis intermediären Metamorphiten des Kristallinen Grundgebirges.

< NG = kleiner Nachweisgrenze

Anhang 4

Grundwasserbeschaffenheit – Verzeichnis der Spannweitendiagramme der physikochemischen Parameter der in der Planungsregion 12 Donau-Wald untersuchten Grundwasserproben

Im Folgenden sind die charakteristischen Spannweitendiagramme ("Box-Plots") der physikochemischen Parameter der Grundwasserbeschaffenheit in den in der Planungsregion 12 Donau-Wald unterschiedenen Grundwässern dargestellt. Folgende Abbildung erläutert die Signaturen nach DVWK (1999).

Bei den unterschiedenen Grundwässern ist jeweils in Klammern die Anzahl der berücksichtigten Werte angegeben. Standen weniger als 10 Analysen bei einem Parameter zur Verfügung, wurden nur Minimum, Median und Maximum dargestellt. Soweit die Nachweisgrenzen (NG) und Bestimmungsgrenzen (BG) der jeweiligen Parameter innerhalb des dargestellten Konzentrationsbereichs liegen, sind diese als beschriftete Linien dargestellt.

Die Darstellung der Parameter erfolgt in der Reihenfolge der Auflistung in den Tabellen von Anhang 3. Nicht weiter dargestellt werden wegen durchgehend sehr selten erfolgter Nachweise die routinemäßig gemessenen Elemente Fluorid, Bromid, Nitrit, Phosphat, Ammonium, Silber, Gold, Wismut, Beryllium, Quecksilber, Zinn und Selen. Die entsprechenden Maßzahlen sind jedoch in den Tabellen in Anhang 3 aufgelistet.

Wassertemperatur [°C]

Anhang 4-1: Spannweitendiagramme der Wassertemperatur in den unterschiedenen hydrogeochemischen Einheiten.

pH-Wert

Anhang 4-2: Spannweitendiagramme des pH-Werts in den unterschiedenen hydrogeochemischen Einheiten.

Spezifische elektrische Leitfähigkeit bei 25°C [µS/cm]

10 12 4 ν. ∞ σ Quartär des Donautals (107) Quartär Quartär des Inntals (16) Quartär des Vilstals (10) đ Schotter und Sande des (8) intrakristallinen Tertiärs **OSM Hangendstockwerke** (9) **OSM Hauptstockwerk** (6) Sedimente der Tertiärbuchten (15) und Braunkohlentertiär (OSM) Tertiär Ortenburger Schotterabfolge (17) **OBSM Hangendstockwerke** (7) OMM Hauptstockwerk (44)OMM Austauschwässer (5) Ca/Na > 0,2 OMM Austauschwässer (18) H ٠ Ca/Na < 0,2 Kreide/ Tertiär Kreide/Tertiär-(6) Mischwässer Dogger/Malm-Mischwässer (2) Jura Malm-Thermalwässer (1) Oberflächennahes (40)**Kristallin** Kristallines Grundgebirge Tektonite/Ganggesteine (17) ł 4 Saure bis intermediäre (198) Plutonite Ultrametamorphite (108) ٠ Saure bis intermediäre (321) Metamorphite BG

O2-Gehalt [mg/l]

Anhang 4-4: Spannweitendiagramme des Sauerstoffgehalts in den unterschiedenen hydrogeochemischen Einheiten.

100 120 20 40 60 80 Quartär des Donautals (124) Quartär Quartär des Inntals (16) Quartär des Vilstals (10) ŧ Schotter und Sande des (8) intrakristallinen Tertiärs **OSM Hangendstockwerke** (11) **|** −**|**+ **OSM Hauptstockwerk** (9) Sedimente der Tertiärbuchten (23) und Braunkohlentertiär (OSM) Ortenburger Schotterabfolge (24) **OBSM Hangendstockwerke** (5) OMM Hauptstockwerk (44) OMM Austauschwässer (5)Ca/Na > 0,2 OMM Austauschwässer (18)H Ca/Na < 0,2 Kreide/ Tertiär Kreide/Tertiär-(8) Mischwässer Dogger/Malm-Mischwässer (7) Jura Malm-Thermalwässer (1) Oberflächennahes (40) Kristallin Kristallines Grundgebirge Tektonite/Ganggesteine (17) Saure bis intermediäre (201) Plutonite ٠ Ultrametamorphite (110) Saure bis intermediäre Metamorphite (324) ٠ BG

O₂-Sättigung [%]

Anhang 4-5: Spannweitendiagramme der Sauerstoffsättigung in den unterschiedenen hydrogeochemischen Einheiten.

CO₂ freie Kohlensäure [mg/l]

Anhang 4-6: Spannweitendiagramme der Konzentration an freier Kohlensäure in den unterschiedenen hydrogeochemischen Einheiten.

Cl⁻ Chlorid [mg/l]

Anhang 4-7: Spannweitendiagramme der Chloridkonzentration in den unterschiedenen hydrogeochemischen Einheiten.

NO3⁻ Nitrat [mg/l]

Anhang 4-8: Spannweitendiagramme der Nitratkonzentration in den unterschiedenen hydrogeochemischen Einheiten.

SO₄²- Sulfat [mg/l]

Anhang 4-9: Spannweitendiagramme der Sulfatkonzentration in den unterschiedenen hydrogeochemischen Einheiten.

HCO3⁻ Hydrogenkarbonat [mg/l]

Na⁺ Natrium [mg/l]

Anhang 4-11: Spannweitendiagramme der Natriumkonzentration in den unterschiedenen hydrogeochemischen Einheiten.

K⁺ Kalium [mg/l]

Anhang 4-12: Spannweitendiagramme der Kaliumkonzentration in den unterschiedenen hydrogeochemischen Einheiten.

Ca²⁺ Calcium [mg/I]

Mg²⁺ Magnesium [mg/l]

Anhang 4-14: Spannweitendiagramme der Magnesiumkonzentration in den unterschiedenen hydrogeochemischen Einheiten.

Fe(tot) Eisen [mg/l]

Anhang 4-15: Spannweitendiagramme der Eisenkonzentration in den unterschiedenen hydrogeochemischen Einheiten.

Anhang 4-16: Spannweitendiagramme der Mangankonzentration in den unterschiedenen hydrogeochemischen Einheiten.

Si Silicium [mg/l]

Anhang 4-17: Spannweitendiagramme der Siliciumkonzentration in den unterschiedenen hydrogeochemischen Einheiten.

222Rn Radon [Bq/l]

Anhang 4-18: Spannweitendiagramme der Radonkonzentration in den unterschiedenen hydrogeochemischen Einheiten.

Gesamtmineralisation [mg/l]

Anhang 4-19: Spannweitendiagramme der Gesamtmineralisation in den unterschiedenen hydrogeochemischen Einheiten.

Gesamthärte [°dH]

Anhang 4-20: Spannweitendiagramme der Gesamthärte in den unterschiedenen hydrogeochemischen Einheiten.

Karbonathärte [°dH]

Anhang 4-21: Spannweitendiagramme der Karbonathärte in den unterschiedenen hydrogeochemischen Einheiten.

Sättigungsindex (Calciumkarbonat)

Anhang 4-22: Spannweitendiagramme des Sättigungsindex in den unterschiedenen hydrogeochemischen Einheiten.

Basekapazität bis pH 8,2 [mmol/l]]

Anhang 4-23: Spannweitendiagramme der Basekapazität in den unterschiedenen hydrogeochemischen Einheiten.

Säurekapazität bis pH 4,3 [mmol/l]

Anhang 4-24: Spannweitendiagramme der Säurekapazität in den unterschiedenen hydrogeochemischen Einheiten.

Al Aluminium [µg/l]

As Arsen [µg/l]

Anhang 4-26: Spannweitendiagramme der Arsenkonzentration in den unterschiedenen hydrogeochemischen Einheiten.

B Bor [µg/l]

Anhang 4-27: Spannweitendiagramme der Borkonzentration in den unterschiedenen hydrogeochemischen Einheiten.

Ba Barium [µg/l]

Anhang 4-28: Spannweitendiagramme der Bariumkonzentration in den unterschiedenen hydrogeochemischen Einheiten.

Be Beryllium [µg/l]

Bi Wismut [µg/I]

Anhang 4-30: Spannweitendiagramme der Wismutkonzentration in den unterschiedenen hydrogeochemischen Einheiten.

Cd Cadmium [µg/l]

Anhang 4-31: Spannweitendiagramme der Cadmiumkonzentration in den unterschiedenen hydrogeochemischen Einheiten.

Ce Cer [µg/l]

Co Cobalt [µg/l]

Anhang 4-33: Spannweitendiagramme der Cobaltkonzentration in den unterschiedenen hydrogeochemischen Einheiten.

Cr Chrom [µg/l]

Anhang 4-34: Spannweitendiagramme der Chromkonzentration in den unterschiedenen hydrogeochemischen Einheiten.

0,0001 0,00` 0,01 100 ļ 10 Quartär des Donautals (128) Quartär Quartär des Inntals (17) Quartär des Vilstals (10) Schotter und Sande des (8) intrakristallinen Tertiärs OSM Hangendstockwerke (14) OSM Hauptstockwerk (11) Sedimente der Tertiärbuchten und Braunkohlentertiär (OSM) (24) Tertiär Ortenburger Schotterabfolge (25) **OBSM Hangendstockwerke** (8) OMM Hauptstockwerk (44) OMM Austauschwässer (5) Ca/Na > 0,2 OMM Austauschwässer (18) Ca/Na < 0,2 Kreide/ Tertiär Kreide/Tertiär-(8) Mischwässer Dogger/Malm-Mischwässer (7) Jura Malm-Thermalwässer (6) ••• Oberflächennahes (42) Kristallin Kristallines Grundgebirge Tektonite/Ganggesteine (18) Saure bis intermediäre (231) Plutonite Ultrametamorphite (112) Saure bis intermediäre (380) Metamorphite Ŋ BG

Cs Cäsium [µg/l]

Cu Kupfer [µg/l]

Anhang 4-36: Spannweitendiagramme der Kupferkonzentration in den unterschiedenen hydrogeochemischen Einheiten.

La Lanthan [µg/l]]

Li Lithium [µg/l]

Anhang 4-38: Spannweitendiagramme der Lithiumkonzentration in den unterschiedenen hydrogeochemischen Einheiten.

Mo Molybdän [µg/l]

Anhang 4-39: Spannweitendiagramme der Molybdänkonzentration in den unterschiedenen hydrogeochemischen Einheiten.

Ni Nickel [µg/l]

Anhang 4-40: Spannweitendiagramme der Nickelkonzentration in den unterschiedenen hydrogeochemischen Einheiten.

0,00 0,01 0 6 Quartär des Donautals (128) Quartär Quartär des Inntals (17) Quartär des Vilstals (10) ٠ Schotter und Sande des (8) intrakristallinen Tertiärs OSM Hangendstockwerke (14) OSM Hauptstockwerk (11) Sedimente der Tertiärbuchten (24) und Braunkohlentertiär (OSM) Tertiär Ortenburger Schotterabfolge (25) **OBSM Hangendstockwerke** (8) OMM Hauptstockwerk (44) OMM Austauschwässer (5) Ca/Na > 0,2 OMM Austauschwässer (18) ٠ Ca/Na < 0,2 Kreide/ Tertiär Kreide/Tertiär-(8) Mischwässer Dogger/Malm-Mischwässer (7) Jura Malm-Thermalwässer (6) Oberflächennahes (42)• **Kristallin** Kristallines Grundgebirge Tektonite/Ganggesteine (18) Saure bis intermediäre (231) Plutonite Ultrametamorphite (112) Saure bis intermediäre Metamorphite (380) NG ВG

Pb Blei [µg/l]

Anhang 4-41: Spannweitendiagramme der Bleikonzentration in den unterschiedenen hydrogeochemischen Einheiten.

Rb Rubidium [µg/l]

Sb Antimon [µg/l]

Anhang 4-43: Spannweitendiagramme der Antimonkonzentration in den unterschiedenen hydrogeochemischen Einheiten.

Sn Zinn [µg/l]

1000 8 6 Quartär des Donautals (128) Quartär Quartär des Inntals (17) **⊢]**-₩ Quartär des Vilstals (10) H H H Schotter und Sande des (8) intrakristallinen Tertiärs OSM Hangendstockwerke (14) OSM Hauptstockwerk (11) H Sedimente der Tertiärbuchten (24)und Braunkohlentertiär (OSM) Tertiär Ortenburger Schotterabfolge (25) **OBSM Hangendstockwerke** (8) OMM Hauptstockwerk (44) F OMM Austauschwässer (5) Ca/Na > 0,2 OMM Austauschwässer (18)Ca/Na < 0,2 Kreide/ Tertiär Kreide/Tertiär-(8) Mischwässer Dogger/Malm-Mischwässer (7) •----•**|**---•• Jura Malm-Thermalwässer (6) Oberflächennahes (42)**Kristallin** Kristallines Grundgebirge Tektonite/Ganggesteine (18) F Saure bis intermediäre (231) Plutonite Ultrametamorphite (112) Saure bis intermediäre Metamorphite (380)

Sr Strontium [µg/l]

Anhang 4-45: Spannweitendiagramme der Strontiumkonzentration in den unterschiedenen hydrogeochemischen Einheiten.

Th Thorium [µg/l]

Anhang 4-46: Spannweitendiagramme der Thoriumkonzentration in den unterschiedenen hydrogeochemischen Einheiten.

TI Thallium [µg/l]]

Anhang 4-47: Spannweitendiagramme der Thalliumkonzentration in den unterschiedenen hydrogeochemischen Einheiten.

U Uran [µg/l]

V Vanadium [µg/l]

Anhang 4-49: Spannweitendiagramme der Vanadiumkonzentration in den unterschiedenen hydrogeochemischen Einheiten.

Anhang 4-50: Spannweitendiagramme der Yttriumkonzentration in den unterschiedenen hydrogeochemischen Einheiten.

Zn Zink [µg/l]

Anhang 4-51: Spannweitendiagramme der Zinkkonzentration in den unterschiedenen hydrogeochemischen Einheiten.

(Geowissenschaftliche Landesaufnahme			Profilsc	nnitt A - A'
in der Planungsregion 12				SW	
	Donau-Wald			800	
				700 -	
Hydrogeologische Karte 1:100000					
				500 -	Mengkofen
Blatt :): Jacologischo Profilschnitto			400 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	
Schemat				200 -	
Hydrogeo	logische Einheiten	Lithologie		100 -	
dsl ta	Deckschichten bindiger Zusammensetzung Polygenetische Talfüllungen		Deckschicht, meist bindiger Zusammensetzung	0 -	
qS	Quartäre Bach- oder Flussablagerungen mit hohem Feinkornanteil		Kies mit Sand	-100 -	
qG	Quartare Flussschotter und -sande			-200 -	
tbwgs tbwt	Schötter und Sande des intrakristallinen Tertiars Sedimente der Tertiärbuchten und Feinsedimente des intrakristallinen Tertiärs		Kies mit Sand, tonig-schluffig	-300 -	
miQ			Sand mit Kies, mit Ton- und Schluffeinschaltungen	-400 -	
miNV	Fluviatile Süßwasserschichten (inkl. Hoisberger Abfolge)			-500 -	
miBk miUL	Braunkohlentertiär (OSM) Limnische Süßwasserschichten		Ton, Schluff	-600 -	
OBSM	Obere Brackwasser-/Ältere Obere Süßwassermolasse (Obere Brackwassermolasse + Limnische Untere Serie/Limnische Süßwasserschichten)		Ton, Schluff, sandig	-700 -	
míOG OMM	Ortenburger Schotterabfolge Obere Meeresmolasse (ungegliedert)			-800	
miGB miN	Glaukonitsande und Blättermergel Neuhofener Schichten		Ton und Schluff mit Sandlinsen		1000 2000 3000 4000 5000 6000
kro	Oberkreide (ungegliedert)		Taratain and in a damage basing and with Canadatain		
) 99	Kristallin allgemein		ronstein, sandig oder wechseind mit Sandstein		
tmps fuse	Saure bis intermediare Plutonite und Ganggesteine Saure bis intermediare Metamorphite, epi-/mesozonal		Kalkstein und Dolomitstein, z.T. verkarstet		
fusk fag	Saure bis intermediäre Metamorphite, katazonal Ultrametamorphite granitischen Gefüges (Diatexite)				
ft	Tektonite	+++++++ ++++++	Kristallin allgemein		

Grundwasserführung Grundwasserleiter ohne nennenswerte Grundwasserführung (Grundwasserüberdeckung) Grundwasseroberfläche

Geowissenschaftliche Landesaufnahme in der Planungsregion 12 Donau-Wald

Hydrogeologische Karte 1 : 100 000

Blatt 5: Hydrogeologische Profilschnitte

Hydrogeologische Karte

Planungsregionen in Bayern

Bayerisches Landesamt für Umwelt Bürgermeister-Ulrich-Straße 160 86179 Augsburg http://www.lfu.bayern.de

Bayerisches Landesamt für Umwelt			1	Gefördert mit Mitteln des Europäischen Fonds für Regionale Entwicklung (EFRE)	
Herausgeber:	Bayerisches I Bürgermeiste 86179 Augsbr Telefon: 082 Fax: 082 E-Mail: pos Internet: www	Landesamt für Umwelt yr-Ulrich-Straße 160 urg 1 9071-0 1 9071-5556 tstelle@lfu.bayern.de w.lfu.bayern.de			
Wissenschaftliche Bearbeitung:	B. Kainzmaier, G. W. Diepolder				
Digtale Kartographie:	M. Balg				
Geologische Grundlagen:	Bayerisches Landesamt für Umwelt: Geologische Karte von Bayern 1: 25000 im Projektgebiet Bearbeitungsstand 2010, teilweise noch unveröffentlicht				
Druck:	Offsetdruckerei Karl Grammlich GmbH, 72124 Pliezhausen				
Copyright:	© Bayerisches Landesamt für Umwelt Nachdruck, Vervielfältigung auf fotomechanischem oder ähnlichem Weg sowie Speicherung in Datenverarbeitungsanlagen – auch auszugsweise – nur mit schriftlicher Genehmigung des Herausgebers.				
Geowissenschaftliche Lande in der Planungsregion 12 Do	Hydrogeologische Karte	1 : 100 000	Augsburg 2011		

$\begin{array}{c} + \\ + \\ \times \\ \times \\ \end{array} + \\ \times \\ \end{array} + \\ \times \\ \times \\ \end{array}$		
	saure bis intermediäre Plutonite und Ganggesteine (Granite, Granodiorite, Diorite)	Profilschnitt B - B'
	saure bis intermediäre Metamorphite, epi-/mesozonal (Glimmerschiefer, z.T. Quarzite)	SW m NN 1200
	saure bis intermediäre Metamorphite, katazonal (Gneise, Metatexite)	1100 - 1000 -
	Ultrametamorphite granitischen Gefüges (Diatexite, Migmatite)	900 -
	Tektonite (Kataklasite, Mylonite, Ultramylonite)	800 -
	Kristallinzersatz allgemein	700 - 600 -
		500 - nördlich Walkersdorf r
Quelle	T	400 - miSF qG 300 - OBSM
Bohrung	Bohrung, projiziert Bohrung, gekürzt	200 -
1	1	100 -
Störung	Störung, vermutet	0 1000 2000 3000 4000 5000 6000 7000 8000